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ABSTRACT

The paper addresses the estimation of abrupt changes
which are contaminated by multiplicative Gaussian noise.
The marginal mean a posteriori or marginal maximum
a posteriori estimators can be derived for estimating
the position of a single abrupt change. However, these
estimators have optimization or integration problems
for multiple abrupt changes. The paper solves these
optimization problems by using Markov Chain Monte
Carlo methods.

1. INTRODUCTION

Increasing interest is being shown in many signal process-
ing applications for abrupt change estimation and de-
tection. These applications include segmentation, fault
detection or monitoring (for an overview see [1] and
references therein). Most of these studies have been
carried out for signals contaminated by additive noise.
However, the observed process can also be corrupted by
multiplicative noise. Some examples of multiplicative
noise occur in image processing (speckle) or communi-
cation (fading channels). This paper focuses on edge
detection in Synthetic Aperture Radar (SAR) images
contaminated by multiplicative speckle noise.

Abrupt change and noise parameters can be esti-
mated using the Maximum Likelihood (ML) method
[10]. However, the resulting Maximum Likelihood Es-
timator (MLE) has serious limitations, especially when
multiple abrupt changes occur. First, since no prior
knowledge about the parameters is used, the ML es-
timates may lie outside the realistic parameter range.
Second, the MLE is sensitive to over-parametrization
[8]. Finally, the MLE can face optimization problems.
This paper uses Bayesian inference for abrupt change
location estimation. The marginal posterior proba-
bility density function (pdf) of abrupt change loca-
tions is used to derive the Marginal MEan A Poste-
riori (MMEAP) and Marginal MAximum A Posteri-
ori (MMAARP) estimators. Unfortunately, the imple-

mentation is difficult with multiple abrupt changes.
Markov Chain Monte Carlo (MCMC) methods are then
used to simulate the marginal abrupt change location
posterior pdf and to compute the MMEAP and MMAAP
estimators.

2. PROBLEM FORMULATION

The SPECtral ANalysis (SPECAN) algorithm (com-
bined with parametric spectral estimation) was shown
to offer spatial resolution improvement and speckle noise
reduction [3][6]. The SPECAN performs a line-by-line
processing of the SAR image. Following the conven-
tional SAR processor (i.e. matched filter + SPECAN),
the received signal can be modelled by:

n=1,.,N (1)

Tp = bpsy

by, 8, and x, are the multiplicative noise, the uncor-
rupted and corrupted line of the SAR image respec-
tively. The properties of b, and s, in SAR image
processing are defined by:

e The terrain reflectivity is usually modelled by a
complex random variable whose real and imaginary
parts are zero-mean Gaussian (considering the very
large number of image cells in the radar field of view
and invoking the central limit theorem [2][3]). Conse-
quently, the mulliplicative noise b, is modelled by a
zero mean Gaussian variable with variance o?.

e The uncorrupted line of the SAR image s, can
be modelled by K steps, when K fields with different
reflectivities are considered. Denote N as the number
of samples. Denote T' as the sampling period and m;_
(with mog = 0 and mx = N) as the sample point after
which there is the ith sudden change (with amplitude
A;) in the signal (¢ = 1,...,K). The actual change
locations are ¢t; = m;T'+ 7, with 0 < 7 < T'. The
uncorrupted line of the SAR image can then be defined
by:

$n=A;, nelmi_1,m, i=1,...K (2)



3. BAYESIAN DATA ANALYSIS

The parameter a posteriori probability density function
(pdf) is used in the Bayesian formalism. This a poste-
riori pdf is the product of the likelihood function con-
ditioned on the parameters and the parameter priors.
The Gaussian likelihood function of z = (z1,...,xx)"
(where t denotes transposition), conditioned on the
abrupt change and noise parameters (i.e. abrupt change
locations m = (my,...,mx _1)', abrupt change ampli-
tudes gt = (p1, ..., pux)" and noise standard deviation
o) is defined by:
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rameter priors can be chosen using the a posteriori
transformation invariance principle or the a priori max-
imum entropy principle as described in [7]. However,
these priors can lead to intractable computations. This
study uses the following priors for the abrupt change
location estimation problem (the abrupt change num-
ber is first assumed known): 1) Uniform priors are
chosen for the abrupt change amplitudes. These non-
informative prior densities express ignorance about the
value of the parameter vector p, 2) The Jeffrey’s prior
for the standard deviation ¢ is a common choice in
Bayesian estimation. This prior pdf corresponds to a
uniform pdf in a logarithmic scale, 3) m is uniform over
all ordered subsequences of (1,...,N) of length K — 1
(with K << N). Using Bayes’ theorem, the posterior
pdf density of the parameters, given the data and with
the previous priors, can be expressed as:

p(8]2) o< ~p (2]0) (1)

where “o” means “proportional to”. The next step in
the proposed Bayesian inference removes the so called
“nuisance parameters” by integration of the posterior
pdf density (4) (this operation is often referred to mar-
ginalization). Marginal inference has been used suc-
cessfully in signal processing, mainly because it reduces
the Bayesian inference complexity. Using the gamma
integral I (t) = 0+oo u' e % du, the following result
can be obtained:
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where lp+1 = mp1 — M. The marginal pdf p (m|z)
is used to derive the MMEAP and MMAAP estima-
tors, in the case of a single abrupt change. However,
when multiple abrupt changes occur, these two esti-
mators face integration or optimization problems. For
instance, the implementation of the MMAAP estimator
requires to examine all possible abrupt change configu-
rations. The number of these configuration is CJI\?*l
= WW, which can be very large (for in-
stance CZy, =2 10°). Consequently, it is not always
feasible to examine all possible abrupt change config-
urations. Moreover, the problem is much more com-
plicated when the abrupt change number is unknown,
since the marginal density has to maximized with re-
spect tom and K. To cope with the previous problems,
the next section proposes a simulation approach using
Markov Chain Monte Carlo (MCMC) methods.

4. SIMULATION USING MCMC

This section addresses the Bayesian estimation of the
number and the location of multiple abrupt changes
(defined in eq. (2)) using MCMC methods. Note that
the abrupt change number is unknown. Define an in-
dicator vector w = (wy, ...,wy)" such that:

wj =1 if there is an abrupt change at lag j (6)
w; =0 otherwise

The number of abrupt changes is a function of w €

N
Q ={0,1}" since 3. w; = K — 1. Consequently, the
j=1
Gaussian likelihood function conditioned to the para-

meter vector § = (o, /Lt,mt,K)t (defined in eq. (3))
can be expressed as a function of the parameters o,
and w. Denote as p(z|o, i, w) the corresponding condi-
tional pdf. The Jeflrey’s and uniform priors are used
for the noise standard deviation and the abrupt change
amplitudes, as previously. The random variables w; are
assumed independent with Bernoulli priors with para-
meter A\. The marginal posterior density p(w|z) can
then be easily determined (using Bayes theorem). A
Markov chain ©" = (O7);—1. n is constructed on {2
by the Metropolis-Hastings algorithm with stationary
distribution P (w|z). A chain element is a vector of the
form ©"(w). The Markov chain is constructed as fol-
lows: 1) the chain starts from a random starting point
0% € Q, 2) a value 2"*! is drawn from ¢(2"71|O"),
where ¢ is an arbitrary transition probability function
on {2, 3) 2" is then accepted as ©"*! with probabil-
ity:
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or equivalently, if Rand is the outcome of a uniform
drawing on [0,1]:
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otherwise

@n+1 — Zn+1
@n+1 — Q"

It is well-known that P (w|z) is the stationary and as-

ymptotic distribution of @7, if q(@/|@) is irreducible

d
— 0%, where
n—oo

and aperiodic. In other words, ©"

% denotes the convergence in distribution and P (w|z)
is the distribution of ©°°. After a sufficiently long (so-
called) burn-in, Markov Chain elements ©™ can be used
to approximate the MMAAP and MMEAP estimators.
Denote as Njy;c and Np; the total number of Markov
Chain runs and the number of burn-in iterations. The
ergodic theorem for Markov chains (analog of the law
of Large Numbers) yields:
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(9)
Eq. (9) shows that 8" isa good approximation of
E[O%] = (E[6%°],..., B[0%])", for a large number of
Markov Chains runs Nj;c. Note that F[O9°] is the
probability of an abrupt change at lag ¢, conditioned
on the observation vector x. Consequently, the vector
@NMC e—lNMc7...7mNM

of the probabilities £[©%°]. The algorithm used in the
Markov Chain combines different choices of transition
probabilities ¢ in this implementation: 1) the indepen-
dence sampler defined by ¢(0'|0) = ¢(0') is considered
(the candidates are drawn independently of the current
location ©). For our experiment, ¢ is a Bernoulli dis-
tribution (with parameter A\ = ﬁ and § = 5) for
each abrupt change, 2) “birth” or “death” of changes
(see [5]), 3) shifted abrupt change locations. To en-
sure convergence, the Markov chain associated with ¢
is reversible in each of the three procedures (see [5]).
Choice of different transition probabilities ¢ increases
the convergence speed since every state can be visited
in few iterations.

¢
(o} . .
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5. SIMULATION RESULTS

Many simulations have been conducted to validate the
previous theoretical results. This paper first consid-
ers an ideal step multiplied by a white Gaussian noise.

This signal yields simultaneous mean and variance jump.
The signal and noise parameters are N = 1024, p =
(1,1+A), m = N/2 and 0 = 1. The MCMC ap-
proach is not useful in this particular case. Indeed,
the MMEAP and MAAP estimators can be derived us-
ing the marginal posterior pdf p (m|z) defined in eq.
(5). Fig. 1. shows a plot of Inp (m|z) for the previ-
ous signal and noise parameters. The abrupt change
position MMAAP estimate is m = 512, for this par-
ticular realization. Fig. 2 shows the abrupt change
position MMAAP estimate histogram, computed from
500 Monte Carlo runs. Both figures show the good
performance of the Bayesian estimator.
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The MMAAP estimator performance (mean square
error (MSE)) is depicted in fig. 3 as a function of the
number of samples for different step amplitudes. Ob-
viously, the estimator performance increases with the
step amplitude and the number of samples (except for
A = 0.1 where the MSE is too large to be significant).
This first analysis shows that the position of a step
with amplitude A > 0.5 corrupted by a multiplicative
white noise (with variance 62 = 1) can be estimated
with good performance.
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Simulations are then presented for a signal sub-
jected to multiple abrupt changes and contaminated
by multiplicative white Gaussian noise. The signal and
noise parameters are N = 500, m = (100, 150, 300, 450)",
p = (1.0,3.5,0.5,3.6,0.6)" and 02 = 1. A particular
realization of this signal is plotted in fig. 4 (above).
A Markov chain with invariant distribution 7 (w|z)

is simulated. The vector @NMC,
probability of an abrupt change at each lag, is plot-
ted in fig. 4 (below). This result was obtained for
Nye = 390 (30 burn-in iterations and 100 computa-
tion iterations for each transition probability), which
only takes about 5 minutes on a PC Pentium 133Mhz
in Matlab.
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Fig. 4. Abrupt Change Position Estimate

Clearly, a suitable threshold allows the estimate of
the abrupt change positions. It is interesting to note
that the total simulation time (burn in + computation

of @NMC) is approximately 5 minutes on a pentiumThe
central limit theorem for ergodic averages can be used
to obtain quantitative results from MCMC output. In-
deed, under a geometrically ergodic convergence (see
chapter 4 in [4]), the Markov chain ©" = (0),_,
satisfies the following property:

Noro (@iNMC _E [@g@]) 4,

Npyoc— o0

N(0,07) (10)

The difficult problem of estimating 02 is reviewed in
[4] and is currently under investigation.

6. CONCLUSION

Bayesian inference was used successfully to estimate
the position of abrupt changes embedded in multiplica-
tive white Gaussian noise. The marginal maximum a
posteriori estimator showed good performance for sin-
gle abrupt change estimation. Unfortunately, the im-
plementation is difficult for multiple abrupt changes.
Instead, the Metropolis Hastings algorithm was used
to simulate Markov chains whose invariant distribution
was the marginal a posteriori abrupt change pdf (con-
ditionally to the observation vector). The algorithm
provided an estimate of the probability of an abrupt
change at each lag. Comparison of these probabilities
to a convenient threshold allowed the abrupt change
positions to be estimated.
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