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ABSTRACT

We present a new classi�cation method using deformable
template model to separate natural objects from man made
objects in an image given by a high resolution sonar. A
prior knowledge of the manufactured object shadow shape
is described by a prototype template and a set of admis-
sible linear transformations to take into account the shape
variability. Then, the classi�cation problem is de�ned as a
two step process; �rstly the detection problem of a region
of interest in the input image is stated in a Bayesian frame-
work and is posed as an equivalent energy minimization
problem of an objective function: in this paper, this energy
minimization problem is solved by using a hybrid Genetic
Algorithm (GA). Secondly, the value of this function at con-
vergence allows to determine the presence of the desired ob-
ject in the sonar image. This method has been successfully
tested on real and synthetic sonar images1, yielding very
promissing results.

1. INTRODUCTION

Due to their high resolution, existing sonars allow to de-
tect every object lying on the seabed. Each object can be
identi�ed e�ciently thanks to an analysis of its associated
cast shadow (due to a lack of acoustic reverberation behind
the object). However, as data volume has noticeably in-
creased, the exploitation of the collected data has now to
be achieved with an automatic processing chain.

Contrary to cast shadow of a natural object, the one
of a manufactured object has a regular and/or geometrical
shape easily identi�able. Bayesian statistical theory is a
convenient way of taking this a priori information into con-
sideration. This approach in image analysis has been quite
popular and has been sucessfully applied for image segmen-
tation [1] [2] (with a local prior model) or shape match-
ing with deformable template-based methods (with a global
prior model). Laksmanan et al. [3], for example, have used
a parametric template model to locate the road boundary in
radar images. Then, the edge detection problem is formu-
lated as a Bayesian estimate using a physics-based model
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numerous real sonar pictures and DRET (Direction des Recherches,
Etudes et Technique, French Ministry of Defense) for partial �nancial
support of this work (student grant).

of the radar imaging process. A similar approach for shape
matching is proposed by Jain et al. [4] which combines in
the same manner, both the available knowledge of the shape
properties (as prior model) and an observation model (as
likelihood model). One such method can be e�ciently used
to separate natural objects from man made objects in sonar
imagery. In this way, we de�ne a prototype template and a
set of admissible linear transformations to take into account
the object class shape variability to be detected. Also, we
de�ne a joint Probability Density Function (PDF) which
expresses the dependence between the observed image and
the deformed template. Then, the detection problem of an
object class is stated in a Bayesian framework and is re-
duced to the estimation of the deformation parameters of
the template that maximize the posterior PDF. This max-
imization problem is posed as an equivalent energy mini-
mization problem of an objective function.

In [4], gradient based methods are used for energy min-
imization of this function. These methods have the disad-
vantage to require good initial parameter estimates, other-
wise they will converge toward a local minima. Stochastic
methods based on Simulated Annealing [5] [6] have the ca-
pability of avoiding local minima and no human interaction
is required to initialize the model. But one of the major
drawbacks of this procedure is its high computational re-
quirements. Hereafter, we show that an alternate approach
consists in using a genetic exploration of the search space.

The main contribution of this paper lies in the use of
deformable model and the Bayesian framework to classify
objects in sonar imagery. We propose an appropriate energy
term that di�ers from previously published works. This en-
ergy term uses the informations given by an unsupervised
Markovian segmentation of the input sonar image [2] and
integrates both region homogeneity and edge information.
Finally, we propose a computationally e�cient global opti-
mization method to solve the minimization problem. This
method is based on a stochastic search method using a ge-
netic exploration of the search space combined with a steep-
est ascent procedure and a cooling temperature schedule.

This paper is organized as follows: x2 and x3 describe
the representation of the template and the Bayesian ap-
proach for the deformable template matching and the classi-
�cation problem. The optimization problem using GA is de-
scribed in x4. In x5, we show some detection/classi�cation
results on real and synthetic sonar images.



2. TEMPLATE REPRESENTATION

This contour based model is appropriate for general shape
matching since the same approach can be applied to ob-
jects of di�erents shapes by de�ning di�erent prototype
templates.

Contrary to natural objects, a manufactured object is
a priori mainly composed of elements with simple geomet-
rical shape. For this reason, their cast shadow is rather
regular and shows straight lines and edges. It is the case
for wreck, pipe-line, etc : : : In particular, the cast shadow of
a cylindrical or cubic object is a perfect parallelogram. So,
we de�ne the corresponding prototype template as a paral-
lelogram representation characterized by its 4 vertices. Fig.
2 illustrates the representation.

For military reasons, we have to detect spherical ob-
jects lying on the seabed. In this case, the associated cast
shadow has a typical shape whose representation can eas-
ily be de�ned by a set of n points manually selected or
equally spaced which approximate its outline. A cubic B-
spline shape representation with these n control points cor-
responding to the \landmarks" is then de�ned. The outline
of the spherical object cast shadow on which we can select
this set of n points can be given by a real scene or a syn-
thetic representation of spherical object shadow (Fig. 1).
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Figure 1: (a) Synthetized shadow and echo of a spherical
object given by a ray tracing procedure. (b) Associated pro-
totype template.

The prototype template 0 describes only one of the
possible instances of the shapes to be detected for a class
of object. In order to take into account the variability of
the considered object class, we introduce a set of admissible
linear transformations on 0. Let � be a deformed version
of the original prototype according to a�ne transformation
with parameters �. In the case of our �rst rigid template
(used to detect manufactured object with simple geometri-
cal shape), these deformations involve translation, scaling,
rotation, stretching and skewing of the template as is shown
in Fig.2.

original prototype scale stretch rotate skew

Set of linear transformations

Figure 2: Considered linear transformations in IR2 for the
original prototype associated to the cast shadow of a simple
geometrical shape object.

Due to the spherical symmetry, the spherical object cast

shadow is symmetric with the sonar beam direction. There-
fore, for this template, the only considered transformations
are translation, scaling and stretching (see Fig.3).

stretch
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original prototype scale

Figure 3: Considered linear transformations in IR2 for the
original prototype associated to the cast shadow of a spher-
ical shape object.

3. MAP DETECTION

A common problem in sonar images are artefacts caused by
the speckle noise e�ect which lead to a loss of signal and
a very poor quality of the object boundaries [7]. That is
why the joint model we propose does not use directly the
input image, i:e:, the grey-levels themselves or some gradi-
ent measure on it in order to detect and use the contour of
each object. In our approach, we use the result of an unsu-
pervised two-class (shadow/reverberation areas) Markovian
segmentation of the input sonar image [2]. This allows us
to take into account the observed measurement along the
contour but also the grey-level homogeneity information in-
side and outside the contour. The detection is based on an
objective function � measuring how well a given instance of
deformed template � �ts the content of segmented image
x. From a probabilistic point of view, �(�; x) de�nes the
joint model through the Gibbs Distribution:

P�;X(�; x) =
1

Z
exp

�
��(�; x)

	
(1)

where � is the random vector of parameters, and Z a nor-
malizing constant.

3.1. Joint model

The posterior distribution deduced from (1):

P�=X(�=x) =
1

Zx
exp

�
��(�; x)

	
(2)

provides the probability of a given template given the seg-
mented image. The joint model �(�; x) speci�es the proba-
bility of observing the input image, given a deformed tem-
plate at a speci�c position, orientation, sketch, stretch and
scale. It is a measurement of the similarity between the de-
formed template and the object present in the image. The
energy function �(�;x) is composed of two terms:

Edge energy: Let x0 be the set of 1-labelled pixels in a
binarized high-pass �ltered version of the segmented sonar
image x in two classes (i:e:, x0 represents the edge image
of each detected cast shadow). The deformable template is
attracted and aligned to the salient edges of each object via
an edge potential �eld de�ned as follows: each site s0 asso-
ciated to an edge of a detected shadow region in x creates
an elementary potential �eld �s0(r) such as:

�s0(r) =
1

r
exp

�
�
r

�

�
(3)



where r (r6=0) is the distance to the pixel s0. The di�erent
edges in x0 create a potential �eld �x0(t), given by the total
sum of the di�erent elementary potential �elds �s0(r):

�x0 (t) = inf

�X
s2x0

�s
�
d(s; t)

�
; 1

�
8 pixel (4)

with d(s; t) is the distance between the pixels s and t. In
fact, this potential �eld induces a smooth version of the edge
image x0 in which a site close to an edge will get a potential
value close to 1 (Fig. 4). The degree of this smoothness can
be controled by the parameter �. This edge potential �eld
induces an energy function that relates a deformed template
� to the edges created by each detected object in the input
image:

�c(�; x
0) = � ln

n
1

N�

X
s2�

�x0(s)
o

(5)

where the summation is over all the (N� ) pixels on the
deformed template � and the ln function is used to increase
the dynamics of the energy function �c.
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Figure 4: (a) Sonar image. (b) Associated Markovian two-
class segmentation. (c) Edge potential �eld with � = 1.

Region homogeneity energy: This energy function
aims to place the inside of the deformed template in a region
classi�ed shadow by the segmentation procedure.

�r(�; x) = � ln
n

1

N�
�

X
s2�

�

�(xs � e0)
o

(6)

where �� and N�
�

represent the set of pixels and the num-

ber of pixels inside the contour respectively and � is the
Kronecker delta function.

Using these two energy functions, the posterior distri-
bution of � given x is:

P�=X(�=x) =
1

Zx
exp�

n
�c(�; x

0) + �r(�; x)| {z }
�(�;x)

o
(7)

where Zx is a normalizing constant depending on x only.

3.2. Detection step

We formulate the detection problem as the Maximum A
Posteriori (MAP) estimation of �:

�̂MAP = argmax
�

�
P�=X(�=x)

	
(8)

= argmin
�

�(�; x) (9)

3.3. Classi�cation step

The resulting value of energy �(�̂MAP ; x) is used to mea-
sure the degree of �tness of the template with the region of
interest extracted in x0 and then to determine the presence
of the desired object. If �(�̂MAP ; x) is lower than a given
treshold, then the desired object is assumed to be present
and the �nal con�guration of the deformed template indi-
cates shape and location of the detected object; otherwise
we decide that the desired object is not present.

4. GENETIC OPTIMIZATION

The objective function to be maximized in Eq. 7 is a com-
plex function with several local extrema over the deforma-
tion parameter space. A global search is usually impossible
due to the size of the con�guration space. Instead, we have
implemented a GA-based global optimization technique [8].
We can easily derive a �tness measure F (to be maximized)
directly from Eq. 7 for use in genetic algorithm (i:e:, one
with range [0,1]):

F(�) = exp
�
��(�; x)

	
(10)

In order to prevent premature convergence [8] and to speed
up the convergence rate, we have developed 3 strategies and
have combined them:

1:� The �rst one is an elite-preservation strategy [8]:
the individual with the highest �tness always survives to
be an individual of the next generation.

2:� The second strategy (called hybrid GA [8]) con-
sists in associating the genetic search with a local opti-
mization technique. In each generation, a percentage of
the best individuals are used to initialize a gradient ascent
technique. Therefore, these best individuals explore local
neighborhoods in the parameter space to �nd a point of
higher �tness.

3:� In order to improve the results and the robustness
of the GA, we propose a third modi�cation. The �tness
function F at iteration k is de�ned as follows:

F
k(�) = exp

�
�

1

Tk
�(�; x)

	
(11)

with Tk = T0a
k and a < 1. At the beginning of the ge-

netic search procedure, Tk >1 and the optimization proce-
dure uses a smooth version of the energy function �. This
smooth energy function has fewer spurious local minima,
which helps the genetic procedure to maintain a good di-
versity in the population and to avoid a premature conver-
gence toward to sub-optimal solution. For Tk=1 the genetic
search is carried out with the real cost function �. At the
end of the procedure, Tk < 1, the �tness measure falls o�
rapidly with increasing cost. This allows to maintain a good
competition between individuals located near the optimum
global and to localize precisely the global extrema.

5. EXPERIMENTAL RESULTS

This experiments have been carried out with the template-
based detection, the classi�cation scheme, and the genetic
optimization described in x4. Tests have shown that this



optimization procedure was not very sensitive to the con-
trol parameters. In our application, these parameters are
the following: population size=100, crossover rate=0.8, mu-
tation rate=0.008, maximum number of generations=150.
At each generation, we select 5 % of the best individuals for
the hybridation with the local optimization technique and
the cooling schedule parameters are: T0=2, and a=0.99.
The optimization procedure takes between 10 and 35 sec
(on a IBM P200 workstation) depending on the complexity
of �(�;x).

Fig. 5,6,7 show a few examples of classi�cation results
from our database. Geometric-shape, i:e:, manufactured
objects are well detected (Fig. 5) as well as spherical objects
(Fig. 6), and this method is e�cient even if the cast shadow
shape is partially occluded. Fig. 7 shows several natural
objects and the associated values of the objective function
�(�; x).

6. CONCLUSION

In this paper, we have developped a novel and robust algo-
rithm to distinguish man made objects from natural objects
lying on the seabed in sonar images. We have posed the
detection and classi�cation problem in a Bayesian setting.
This proposed sheme appears as an interesting alternative
to feature-based matching methods and remains very e�-
cient in the case of complex background and occlusions of
several object cast shadows. This method has been vali-
dated on a number of real sonar images demonstrating the
e�ciency and robustness of this scheme and is compatible
with an automatic processing of massive amounts of data.
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Figure 5: The used template and the low value obtained for �
(�<0:2 ) allow to classify these shadows as \manufactured
object cast shadow." (a-b-c) Cylindrical object. �=0.17,
�=0.15, and �=0.14 respectively. (d) pipe-line: �=0.12.
(e) wreck: �=0.15. (f) trolley: �=0.2. (parallelogram tem-
plate).
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Figure 6: � < 0:2 class: \spherical object cast shadow."
(a) � = 0:04. (b) � = 0:15. (c) � = 0:19. (cubic B-spline
template).
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Figure 7: The value of � (>0.2) is su�ciently large so that
we can reject the hypothesis of a manufactured or spherical
object present in these images. [a-c] Markovian segmenta-
tion of the sonar image presented in [d-f]. (d) �=0.40. (e)
�=0.41. (f) �=0.24. (g) �=0.55. (h) �=0.57. (i) �=0.38.


