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ABSTRACT

Although still in practice, the use of total least squares (TLS)
in optical flow estimation is unreliable. TLS implicitly as-
sumes that the error terms affecting the partial derivatives
of the image intensities are independent. The usual meth-
ods for estimating the partial derivatives ensures that the er-
rors are strongly correlated. Due to this correlation, an al-
ternative method is required to treat the resulting errors-in-
variables (EIV) problem. In this paper we propose a new
method for estimating optical flow based on Sprent’s proce-
dure. This method incorporates a general EIV model and
provides a far simpler computational procedure than found
in previous solutions.

1. INTRODUCTION

Gradient-based optical flow estimation techniques rely on the
assumption that the brightness or intensity of a particular point
in a moving pattern does not change with time [4]. Using a
Taylor’s series expansion, this assumption leads to the bright-
ness constraint equation:

g1�1 + g2�2 + g3 = 0 (1)

In (1) g1, g2 and g3 are the partial derivatives of the image in-
tensity with respect to spatial coordinates x1, x2 and time t.
With �1, �2 being the unknownx1, x2 components of the op-
tical flow. Since there are two unknowns in (1), further con-
straints are required to uniquely solve for the optical flow.
One approach for constraining the solution is to fit measure-
ments from a neighbourhoodof surrounding pixels to a local
model. This approach has been used in [5], [14], [15], [8],
[3] and [12].

Let 
 = fpi : i = 1 � � � m;m > 2g denote a particular
neighbourhood ofm pixels which have been ordered lexico-
graphically. Suppose that the optical flow is locally constant
in 
. If we can observe all partial derivatives without error,
determining the optical flow only requires solving a linear
system of equations. However due to noise introduced in the
capturing process, the partial derivatives cannot realistically

be observed without error and hence solving for the optical
flow becomes a statistical estimation problem.

Using classical least squares (LS) to estimate the optical
flow [5] is flawed. LS makes the implicit assumption that
the two spatial derivatives, g1 and g2 are error free with all
the uncertainties confined only to g3. In statistics, situations
for which g1, g2 are not error free are said to have “errors-in-
variables” (EIV) and LS estimators for these cases are statis-
tically inconsistent ([10],[6]).

In this paper we propose a new method for estimating
optical flow which incorporates a general EIV model. Our
method is based on the work of Sprent [10] and involves a
much simpler computational procedure than previous attempts
at addressing EIV.

In the next section we will set up an EIV model for our
optical flow estimation problem, and in the following sec-
tion present a review of previous work in this area. We then
outline our method, implementation details and present sim-
ulation results in section 4, 5 and 6 respectively. Finally, a
discussion of the results and future research plans is presented
in section 7.

2. STOCHASTIC MODEL

Suppose we are interested in estimating optical flow from a
gray-scale image sequence but the only measurements avail-
able are noisy image intensities. Let yj be the observed in-
tensity at pixel pj such that:

yj = go(pj) + �j (2)

where go is the true image intensity and �j are iid Gaussian
random variable with variance �2� .

In general the partial derivatives of the image intensity
are obtained by multiplying an appropriate weight vector with
y, where y represents the lexicographically ordered noisy
intensities over the support region � of size q pixels. That
is, the partial derivative gi (pj) is approximated using

�i (pj) = wT
i;j y = wT

i;j go +wT
i;j � (3)



where wT
i;j is some appropriate vector of weights. We will

further assume thatwT
i;j go gives the true value of the partial

derivative and hence we can re-write (3) as

�i (pj) = gi (pj) + �i;j (4)

where
�i;j = wT

i;j � (5)

If we combine the weights vector together to form matrix
Wi = [wi;1; � � � ;wi;m], our stochastic model in vector form
is:

y = go + � � � Nq

�
0; �2� I

�
(6)

�i = WT
i y = gi + �i (7)

�i = WT
i � (8)

3. PREVIOUS WORK

Synopses of current optical flow estimation techniques can
be found in [2], [13] and [7]. In this section we will outline
only those techniques which have attempted to address EIV.

3.1. Total Least Squares

The fact that partial derivatives of the image intensities can-
not be observed without error has been recognised in [9],
[14], [15] and more recently in [12]. All of these works ap-
plied total least squares (TLS) or TLS-based methods to treat
EIV. TLS, however, implicitly assumes that all the errors af-
fecting the partial derivatives �i;j are independent and iden-
tically distributed. TLS can be shown to be more accurate
than LS under this assumption but TLS may be less accurate
than LS if the assumption does not hold [1] .

As can be seen from equation (5), in optical flow prob-
lems �i;j are generally correlated as they are all derived from
a common noise source �. Thus in general, we do not expect
TLS to give reliable estimates of the optical flow.

3.2. Nagel’s Method

Nagel in [8] developed a maximum likelihood method which
takes into account the correlation between the error terms
�i;j . The aim of Nagel’s method is to maximise the joint
probability of � subject to the constraint

�
�1W

T
1 + �2W

T
2 +WT

3

�
go = 0:

This is equivalent to minimising:

J = �T �+ 2�
�
�1W

T
1 + �2W

T
2 +WT

3

�
(y � �) (9)

by suitable choices of � = (�1; � � � ; �m)
T , �1 and �2. To

solve this minimisation problem, Nagel describes an itera-
tive method that successively improves estimates �, �1 , �2
and �.

It should be noted that Nagel’s method requires the es-
timation of (m+ q + 2) parameters. In most applications,
estimates of� and � do not serve any useful purpose and cal-
culation can be quite time consuming if m or q is large.

4. PROPOSED METHOD

Our proposed method is based on the work of Sprent [10]. In
the 1960’s, Sprent developed an estimation procedure which
can incorporate a general EIV model including the case of
correlated error terms as encountered in optical flow estima-
tion. To the author’s knowledge, Sprent’s procedure has not
been previously applied to the estimation of optical flow.

In a statistical framework, estimating �1 and �2 can be
viewed as estimating the parameters in the linear functional
relationship between mathematical variables g1, g2 and g3,
given a set of measurements �1, �2 and �3 which satisfies
equation (7). The functional relationship of (1) leads to a
structural relationship between the observed variables such
that:

�1�1 + �2�2 + �3 = �1�1 + �2�2 + �3 (10)

Detailed discussions of functional and structural relationships
are given in [6] and [11].

In [10], Sprent describes a generalised least squares ap-
proach to linear functional relationships. Sprent’s procedure
is to minimise over � = (�1; �2):

J = zT��1z (11)

where
z = vector of residuals

and
� = var (z)

In optical flow estimation we let z be the residual of the
brightness constraint,

z = �1�1 + �2�2 + �3

Further let �T = �1W
T
1 + �2W

T
2 +WT

3 then z = �Ty

and the covariance matrix of z is,

� = var (z) = var
�
�Ty

�

= var
�
�Tgo +�T �

�
= var

�
�T �

�

= �T� �2�

(Note that� is a function of the required optical flow �1 and
�2). Since J / �2� , explicit knowledge of the variance is not
required. Hence the minimisation problem can be written as:

J = zT
�
�T�

�
�1

z = yT�
�
�T�

�
�1

�Ty (12)



which is a two dimensional non-linear optimisation problem.
It should be noted that Sprent in [10] does not prescribe

a method for calculating the estimator when there is correla-
tion between the measurements at different pixel sites. We
have chosen to use a conjugate gradient based method which
will be outlined in the next section.

5. IMPLEMENTATION

We have implemented a conjugate gradient method for solv-
ing the non-linear optimisation in equation (12). Let �k be
the solution at the kth iteration. An improved estimate is
constructed by:

�k+1 = �k + �kpk (13)

where �k is such that J (�) is minimum in the search direc-
tion pk. The next search direction is then given by:

pk+1 = �dk+1 + �kpk (14)

where dk+1 is the gradient of J at �k+1. In our implemen-
tation �k is given bydTk+1dk+1=d

T
k dk. For our optical flow

problem the gradient d is given by:

d =

2
4 2sT

�
�1 ��

TW1s
�

2sT
�
�2 ��

TW2s
�
3
5 (15)

where

s =
�
�T�

�
�1

z (16)

Hence at each iteration the computation task is to solve a
one-dimensional minimisation problem and to invert a p�p
matrix in equation (16).

6. SIMULATION

In the simulation study, zero mean iid Gaussian noise was
added to the translating tree sequence used in [2]. We have
chosen to use a neighbourhood size of 20 � 20, and calcu-
lated partial derivatives using the simple differencingas used
in [4]. For each SNR, optical flow estimates were calculated
using LS, TLS and our method. Results for the 25 dB case
can be seen in figures 1 and 2 and for the 20dB case in fig-
ures 3 and 4. The true optical flow can be seen in figure 5
for comparison.

In the 25dB case, there were neighbourhoods near the
bottom left of the image for which the LS estimate detected
little or no flow at all. Some regions of the TLS estimate
gave large anomalous flows. These regions correspond to ar-
eas where the system of equations were highly inconsistent.
In comparison, a fairly accurate estimate over the entire re-
gion was obtain using our method.

When the images were furthered degraded to a SNR of
20dB, the LS estimate detected almost no flow at all. More
regions in the TLS estimate gave anomalous results, while
the our method still performed adequately with errors pre-
dominantly occurring near the bottom left of the image. This
region corresponds to the area under the branch where there
is little intensity gradient information to aid the estimation
of optical flow.

Figure 1: Subsection of the translating tree sequence used in
simulation studies (left) and optical flow estimates using our
method (right). (SNR 25dB).

Figure 2: LS (left) and TLS (right) optical flow estimates
(SNR 25dB).

Figure 3: Subsection of the translating tree sequence used in
simulation studies (left) and optical flow estimates using our
method (right). (SNR 20dB).

7. DISCUSSION

Although still in current practice, the use of TLS in the es-
timation of optical flow is unreliable as TLS implicitly as-
sumes that all the error terms affecting the partial derivatives



Figure 4: LS (left) and TLS (right) optical flow estimates
(SNR 20dB).

Figure 5: True optical flow for the translating tree sequence.

of the intensities are independent. As discussed in section 2,
we cannot realistically expect that the errors to be uncorre-
lated since they are all derived from the same noise source
�. In our simulation study presented in section 6, we have
shown that by incorporating a comprehensive EIV model,
our new method for estimating optical flow is more accurate
and can operate over a greater range of SNRs than either LS
or TLS.

While Nagel’s maximum likelihood method takes into
account the correlation between errors in the measurements.
Our technique based on Sprent’s has the advantage that it
requires neither estimation of the noise source � or the La-
grange multipliers� allowing an elegant implementation in-
volving conjugate gradients.

It should be noted that there is a connection between Nagel’s
method and Sprent’s procedure. The objective function in
Nagel’s method can be converted to the objective function in
Sprent’s by first concentrating out the incidental parameters.
To the authors’ knowledge neither Sprent’s method nor a re-
formulation of Nagel’s methods have previously been used
in optical flow estimation. Sprent’s procedure is not limited
to the stochastic model we have used in this paper and in fur-
ther work we will investigate the use of Sprent’s for more
complicated noise models.

8. REFERENCES

[1] T. J. Abatzoglou, J. M. Mendel, and G. A. Harada. The con-
strained total least squares technique and its applications to
harmonic superresolution. IEEE Transaction on Signal Pro-
cessing, 39(5):1070–1087, May 1991.

[2] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Systems and
experiment: Peformance of optical flow techniques. Inter-
national Journal of Computer Vision, 12(1):43–77, February
1994.

[3] A. Del Bimbo, P. Nesi, and J. L. C. Sanz. Optical flow com-
putation using extended constraints. IEEE Transcations on
Image Processing, 5(5):720–739, May 1996.

[4] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, 17:185–203, 1981.

[5] J. K. Kearney, W. B. Thompson, and D. L. Boley. Optical
flow estimation: An error analysis of gradient-based methods
with local optimization. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-9(2):229–244, March
1987.

[6] M. G. Kendall. The Advanced Theory of Statistics. Griffin,
London, 3rd edition, 1969.

[7] A. Mitiche and P. Bouthemy. Computation and analysis of
image motion: A synopsis of current problems and meth-
ods. International Journal of Computer Vision, 19(1):29–55,
1986.

[8] H. Nagel. Optical flow estimation and the interaction between
measurment errors at adjacent pixel positions. International
Journal of Computer Vision, 15:271–288, 1995.

[9] M. Shizawa and K. Mase. Simultaneous multiple optical flow
estimation. In Proceedings of the 10th International Confer-
ence on Pattern Recognition, pages 274–278, Alantic City,
New York, 1990.

[10] P. Sprent. A generalized least-squares approach to linear
functional relationships. Journal of Royal Statistical Society
Series B, 28(2):278–297, 1966.

[11] P. Sprent. Models in Regression and related topics.
Methuen’s monographs on applied probability and statistics.
Methuen, London, 1969.

[12] S. Srinivasan and R. Chellappa. Robust modeling and esti-
mation of optical flow with overlapped basis functions. Tech-
nical Report CAR-TR-845, Center for Automation Research,
University of Maryland, College Park, MD 20742, December
1996.

[13] M. A. Tekalp. Digital Video Processing. Prentice Hall, 1st
edition, 1995.

[14] S. Wang, V. Markandey, and A. Reid. Total least squares fit-
ting spatiotemporal derivatives to smooth optical flow fields.
In Proceedings of the SPIE: Signal and Data Processing of
Small Targets, volume 1698, pages 42–55, 1992.

[15] J. Weber and J. Malik. Robust computation of optical flow in
a multi-scale differential framework. International Journal
of Computer Vision, 14:67–81, 1995.


