ERRORS-IN-VARIABLESMODELLING IN OPTICAL FLOW PROBLEMS

Lydia Ng

Electronics Department
Macquarie University
Sydney NSW 2109, Australia
Ing@mpce.mg.edu.au

ABSTRACT

Although till in practice, the use of total least squares(TLS)
in optical flow estimation is unreliable. TLS implicitly as-
sumes that the error terms affecting the partial derivatives
of the image intensities are independent. The usual meth-
odsfor estimating the partial derivativesensuresthat theer-
rors are strongly correlated. Due to this correlation, an al-
ternative method is required to treat the resulting errors-in-
variables (EIV) problem. In this paper we propose a new
method for estimating optical flow based on Sprent’s proce-
dure. This method incorporates a general EIV model and
provides a far simpler computational procedure than found
in previous solutions.

1. INTRODUCTION

Gradient-based optical flow estimation techniquesrely onthe
assumptionthat the brightnessor intensity of aparticular point
in a moving pattern does not change with time [4]. Using a
Taylor’sseriesexpansion, thisassumption leadsto the bright-
ness constraint equation:

giv1 + gav2 + g3 =0 (1

In(1) g1, g2 and g3 arethe partia derivativesof theimagein-
tensity with respect to spatial coordinates x, x5 and timet.
With v, v, being theunknownz, 25 componentsof the op-
tical flow. Sincethere aretwo unknownsin (1), further con-
straints are required to uniquely solve for the optical flow.
One approach for constraining the solution isto fit measure-
mentsfrom aneighbourhood of surrounding pixelsto alocal
model. This approach has been used in [5], [14], [15], [8],
[3] and [12].

LetQ={p;:i=1--- m,m > 2} denoteaparticular
neighbourhood of m pixelswhich have been ordered | exico-
graphically. Supposethat the optical flow islocally constant
in Q. If we can observe all partial derivativeswithout error,
determining the optical flow only requires solving a linear
system of equations. However dueto noiseintroducedin the
capturing process, the partial derivativescannot realistically
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be observed without error and hence solving for the optical
flow becomes a statistical estimation problem.

Using classical least squares (L S) to estimate the optical
flow [5] is flawed. LS makes the implicit assumption that
the two spatia derivatives, g; and g, are error free with all
the uncertainties confined only to g3. In statistics, situations
for which g1, g» arenot error freearesaid to have“ errors-in-
variables’ (EIV) and LS estimatorsfor these cases are statis-
tically inconsistent ([10],[6]).

In this paper we propose a new method for estimating
optical flow which incorporates a general EIV model. Our
method is based on the work of Sprent [10] and involves a
much simpler computational procedurethan previousattempts
at addressing EIV.

In the next section we will set up an EIV model for our
optical flow estimation problem, and in the following sec-
tion present areview of previouswork in this area. We then
outline our method, implementation detailsand present sim-
ulation results in section 4, 5 and 6 respectively. Finally, a
discussion of theresultsand futureresearch plansis presented
insection 7.

2. STOCHASTIC MODEL

Suppose we are interested in estimating optical flow from a
gray-scaleimage sequence but the only measurementsavail-
able are noisy image intensities. Let y; be the observed in-
tensity at pixel p; such that:

Yi = go(ps) +¢€; )

where g, isthe trueimage intensity and ¢; areiid Gaussian
random variable with variance o-2.

In general the partial derivatives of the image intensity
are obtained by multiplying an appropriateweight vector with
y, Where y represents the lexicographically ordered noisy
intensities over the support region A of size ¢ pixels. That
is, the partial derivative g; (p;) is approximated using

i (p) =W,y =W g+ W€ ®3)



where ng is some appropriate vector of weights. We will
further assumethat wiTJ- g, givesthetruevaue of the partial
derivative and hence we can re-write (3) as

ni (pj) = 9i (pj) + i j 4

where
5i7j = Wg:j € (5)
If we combine the weights vector together to form matrix
W, = [Wi 1, -, Wi n], ourstochasticmodel invector form

is:

y = g,+e€ € ~ N, (0,021) (6)
n, = W/ y=g+6 (7)
6 = W'le (8

3. PREVIOUSWORK

Synopses of current optical flow estimation techniques can
befoundin[2], [13] and [7]. In this section we will outline
only those techniques which have attempted to address EI V.

3.1. Total Least Squares

Thefact that partial derivatives of theimageintensities can-
not be observed without error has been recognised in [9],
[14], [15] and morerecently in [12]. All of these works ap-
pliedtotal |east squares(TLS) or TL S-based methodsto treat
EIV. TLS, however, implicitly assumesthat all the errors af -
fecting the partial derivatives¢; ; areindependent and iden-
ticaly distributed. TLS can be shown to be more accurate
than L S under this assumption but TLS may beless accurate
than LS if the assumption does not hold [1] .

As can be seen from equation (5), in optical flow prob-
lems¢; ; aregenerally correlated asthey areall derived from
acommon noise source e. Thusin general, wedo not expect
TLSto givereliable estimates of the optical flow.

3.2. Nagel’sMethod

Nagel in[8] devel oped amaximum likelihood method which
takes into account the correlation between the error terms
0; ;. The aim of Nagel's method is to maximise the joint
probability of e subject to the constraint

(1/1W1T + VZWQT + Wg) g, = 0.
Thisis equivalent to minimising:
J=€"e+2X (W] + W, + W) (y—€) (9

by suitable choices of A = (A1,--+, Am)”, v1 and ve. To
solve this minimisation problem, Nagel describes an itera-
tive method that successively improves estimates A, v , v
and e.

It should be noted that Nagel’s method requires the es-
timation of (m + ¢ + 2) parameters. In most applications,
estimates of A and e do not serve any useful purposeand cal-
culation can be quite time consuming if m or ¢ islarge.

4. PROPOSED METHOD

Our proposed method isbased on thework of Sprent[10]. In
the 1960's, Sprent devel oped an estimation procedurewhich
can incorporate a general EIV model including the case of
correlated error terms as encountered in optical flow estima-
tion. To the author’s knowledge, Sprent’s procedure has not
been previously applied to the estimation of optical flow.

In a gtatistical framework, estimating »; and v» can be
viewed as estimating the parametersin the linear functional
relationship between mathematical variables g1, g» and gs,
given a set of measurements n,, n, and n; which satisfies
equation (7). The functional relationship of (1) leadsto a
structural relationship between the observed variables such
that:

7711/1 + 7]2112 + 7]3 = 611/1 + 621/2 + 63 (10)

Detailed discussionsof functional and structural relationships
aregivenin [6] and [11].

In [10], Sprent describes a generalised least squares ap-
proachto linear functional relationships. Sprent’sprocedure
istominimiseover v = (v, v2):

J=2z"%""g (11)

where
z = vector of residuals

and
3 =var (z)

In optical flow estimation we let z be the residua of the
brightness constraint,

zZ =11+ 1NV + 173

Further let ©7 = vy, W] + 1, W] + WI thenz = @'y
and the covariance matrix of z is,

p var (z) = var (G)Ty)

var (G)Tgo + G)Te> = var (@Te)
= 0T

(Notethat ® isafunction of the required optical flow v, and
v5). Since J o o2, explicit knowledge of the varianceis not
reguired. Hencethe minimisation problem can bewritten as:

J=4T (@Te)f1 z2=yT© (eTe)fl 0Ty (12)



whichisatwo dimensional non-linear optimisation problem.

It should be noted that Sprent in [10] does not prescribe
amethod for cal culating the estimator when thereis correla-
tion between the measurements at different pixel sites. We
have chosen to use a conjugate gradi ent based method which
will be outlined in the next section.

5. IMPLEMENTATION

We have implemented a conjugate gradient method for solv-
ing the non-linear optimisation in equation (12). Let v, be
the solution at the kth iteration. An improved estimate is
constructed by:

Vi1l = Vi + QipPr (13)

where o, issuch that J () isminimum in the search direc-
tion p;. The next search direction is then given by:

Pi+1 = —dit1 + BePr (14)

whered,; isthegradient of J a vj1. Inour implemen-
tation 3 isgivenby df, ;di1/d{ d. For our optical flow
problem the gradient d is given by:

2sT (n — @TW1S>
B [ 2sT (77: - @TW25> ] (=)
where .
s=(070) 4 (16)

Hence at each iteration the computation task is to solve a
one-dimensional minimisation problemandtoinvertap x p
matrix in equation (16).

6. SSMULATION

In the simulation study, zero mean iid Gaussian noise was
added to the trand ating tree sequence used in [2]. We have
chosen to use a neighbourhood size of 20 x 20, and calcu-
lated partial derivativesusing thesimpledifferencingasused
in[4]. For each SNR, optical flow estimateswere calculated
using LS, TLS and our method. Results for the 25 dB case
can be seen in figures 1 and 2 and for the 20dB casein fig-
ures 3 and 4. The true optical flow can be seen in figure 5
for comparison.

In the 25dB case, there were neighbourhoods near the
bottom left of the image for which the L S estimate detected
little or no flow at all. Some regions of the TLS estimate
gavelargeanomalousflows. Theseregionscorrespondto ar-
eas where the system of equationswere highly inconsistent.
In comparison, afairly accurate estimate over the entire re-
gion was obtain using our method.

When the images were furthered degraded to a SNR of
20dB, the L S estimate detected almost no flow at all. More
regionsin the TL S estimate gave anomalous results, while
the our method still performed adequately with errors pre-
dominantly occurring near the bottom | eft of theimage. This
region correspondsto the area under the branch where there
is little intensity gradient information to aid the estimation
of optical flow.

Figure 1. Subsection of the trandating tree sequenceused in
simulation studies (left) and optical flow estimates using our
method (right). (SNR 25dB).

Figure 2: LS (left) and TLS (right) optical flow estimates
(SNR 25dB).

Figure 3: Subsection of the trandating tree sequenceused in
simulation studies (left) and optical flow estimates using our
method (right). (SNR 20dB).

7. DISCUSSION

Although still in current practice, the use of TLSin the es-
timation of optical flow is unreliable as TLS implicitly as-
sumesthat all the error termsaffecting the partial derivatives



Figure 4: LS (left) and TLS (right) optical flow estimates
(SNR 20dB).

Figure5: Trueoptical flow for the tranglating tree sequence.

of theintensities are independent. Asdiscussed in section 2,
we cannot realistically expect that the errorsto be uncorre-
lated since they are all derived from the same noise source
€. Inour simulation study presented in section 6, we have
shown that by incorporating a comprehensive EIV model,
our new method for estimating optical flow is more accurate
and can operate over agreater range of SNRsthan either LS
or TLS.

While Nagel’s maximum likelihood method takes into
account the correl ation between errorsin the measurements.
Our technique based on Sprent’s has the advantage that it
requires neither estimation of the noise source e or the La-
grangemultipliers A allowing an elegant implementationin-
volving conjugate gradients.

It should be noted that thereisaconnection between Nagel's

method and Sprent’s procedure. The objective function in
Nagel’s method can be converted to the objectivefunctionin
Sprent’sby first concentrating out the incidental parameters.
To the authors' knowledge neither Sprent’s method nor are-
formulation of Nagel’'s methods have previously been used
in optical flow estimation. Sprent’s procedureis not limited
to the stochastic model we have used in thispaper andin fur-
ther work we will investigate the use of Sprent’s for more
complicated noise models.
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