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ABSTRACT

A method is described for estimating telephone handset nonlin-
earity by matching the spectral magnitude of the distorted signal
to the output of a nonlinear channel model, driven by an undis-
torted reference. This \magnitude-only" representation allows
the model to directly match unwanted speech formants that arise
over nonlinear channels and that are a potential source of degra-
dation in speaker and speech recognition algorithms. As such,
the method is particularly suited to algorithms that use only
spectral magnitude information. The distortion model consists of
a memoryless polynomial nonlinearity sandwiched between two
�nite-length linear �lters. Minimization of a mean-squared spec-
tral magnitude error, with respect to model parameters, relies on
iterative estimation via a gradient descent technique, using a Ja-
cobian in the iterative correction term with gradients calculated
by �nite-element approximation. Initial work has demonstrated
the algorithm's usefulness in speaker recognition over telephone
channels by reducing mismatch between high- and low-quality
handset conditions.

1 INTRODUCTION

A major source of performance loss in speaker recogni-
tion systems is telephone handset mismatch between train-
ing and testing data [3, 4]. Although linear compensation
techniques improve recognition performance, such meth-
ods address only part of the problem, not accounting for
the nonlinear distortion component [4]. Telephone hand-
set nonlinearity often introduces spurious resonances that
are not present in the original speech spectrum. An ex-
ample showing such spurious resonances, which we shall
refer to as \phantom formants," is given in Figure 1 where
a comparison of all-pole spectra from a TIMIT waveform
and its counterpart carbon-button microphone version from
HTIMIT [5] are shown. Phantom formants, occurring at
multiples, sums, and di�erences of original formants, as
well as two other spectral distortions of bandwidth widen-
ing and spectral attening seen in Figure 1, have been con-
sistently observed not only in HTIMIT, but also in other
databases with dual wideband/telephone recordings such as
the wideband/narrowband King and the TIMIT/NTIMIT
databases. For example, in a TIMIT/NTIMIT comparison,
using a formant tracking algorithm, we have measured for
male and female speakers, respectively, on the order of 10%
and 56% phantom formants between F1 and F2, and 16%
and 18% phantom formants between F2 and F3 [2].
In this paper, a nonlinear model is �rst hypothesized to

account for the observed handset distortion. With dual
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Figure 1: Illustration of phantom formants, comparing all-
pole spectra from wideband TIMIT (dashed) and carbon-button
HTIMIT (solid) recordings. Location of �rst phantom formant
(!1+!2) is roughly equal to sum of locations of �rst two original
formants (!1 and !2).

waveform recordings before and after the handset, a method
is then described for estimating the handset model param-
eters using spectral magnitude only, thus directly matching
any phantom formants, bandwidth widening, and spectral
attening due to nonlinearity. The technique, therefore,
aims at matching distortion in the feature domain used
in speaker recognition and other speech processing tasks.
This method of estimation provides a powerful alternative
to time-domain-based matching techniques that do not di-
rectly match spectral magnitude and thus do not explicitly
account for the presence of phantom formants due to nonlin-
ear distortion. Because a goal of this work is to eliminate
handset mismatch between training and testing data, we
next extend our approach to modeling and estimation of
a handset mapper, in contrast to a handset itself. Speci�-
cally, the method is applied to the mapping of high-quality
(e.g. electret) to low-quality (e.g., carbon-button) handsets,
and, to a lesser extent, low-quality to high-quality inversion.
Using the mappings in conjunction with a handset classi-
�er [5], we can improve consistency between training and
testing datasets. These mappings have resulted in signif-
icant improvement in automatic speaker recognition using
a Gaussian mixture-model-based speaker recognition sys-
tem [6].

2 MODEL

At the core of our hypothesized telephone handset model
is a memoryless polynomial nonlinearity whose selection is
based on the observation that raising a resonant response
to an integer power corresponds to adding new phantom
formants at sums, di�erences, and multiplies of the original
formants, and a broadening of resonant bandwidths1. This
simple nonlinear operation is thus consistent with observed

1For periodic signals, these forms of spectral distortion can
be approximately determined from the original formants of the
underlying response. Therefore, although harmonics of the peri-
odic signal add to one another in a complex fashion, the resulting
spectral envelope can be predicted from the original resonances.



spectral distortion. The nonlinearity is sandwiched between
a pre�lter and a post�lter, both of which are assumed FIR.
The primary purpose of the pre�lter is to provide a scaling
and dispersion2, while the post�lter provides some addi-
tional spectral shaping.
In discrete time, let x(n) denote the undistorted signal,

to be referred to as the reference signal. The output of the
nonlinear handset model is given by

y(n) = Q[g(n) � x(n)] � h(n) (1)

where g(n) is an Mth-order FIR pre�lter, h(n) is an Nth-
order FIR post�lter, and Q is a P th-order polynomial non-
linear operator, which for an input value z has an output

Q[z] = q0 + q1z + q2z
2 + ::: qP�1z

P (2)

Observe that we can consider our model (1) as a special
case of the Volterra series representation of nonlinear sys-
tems [8] which has the advantage of being linear in the
unknown parameters. For our problem, however, this series
expansion signi�cantly increases the number of model pa-
rameters, further complicates the internal workings of the
model, and lacks convergence with \hard" constraints such
as a saturating element that we will later add to our model.
To formulate the estimation problem, we de�ne a vec-

tor of model parameters a = [g; q; h], where g =

[g(0); g(1); :::g(M � 1)], q = [q0; q1; :::qP ], and h =

[h(0); h(1); :::h(N � 1)] so that the goal is to estimate
the vector a. A time-domain approach is to minimize
an error criterion based on waveform matching, such asP

n
[s(n)� y(n;a)]2, where s(n) is the measurement signal

and where we have included the parameter vector a as an
argument in y(n). One technique for parameter estimation
is through the Volterra series that yields a linear estima-
tion problem. Because of the aforementioned problems of
this series, as well as sensitivity of waveform matching to
phase dispersion and delay (e.g., typical misalignment be-
tween model output and measurement), we have found this
approach not to be feasible for our application. An alterna-
tive approach is to de�ne the error in the frequency domain
using the spectral magnitude.

3 SPECTRAL MAGNITUDE MATCHING

We begin by de�ning an error between the spectral magni-
tude of the measurement and nonlinearly distorted model
output. Because a speech signal is nonstationary, the error
function uses the spectral magnitude over multiple short
frames and is given by

E(a) =

K�1X
k=0

Z �

0

[jS(!; k)j � jY (!; k; a)j]2d! (3)

where S(!; k) and Y (!;k; a) are the short-time Fourier
transforms of s(n) and y(n;a), respectively, over an ob-
servation interval and where k refers to the frame index.
An important advantage of the use of spectral magnitude
is that the error is de�ned in the domain of interest for
the speaker recognition system, providing a \direct" spec-
tral match to phantom formants, bandwidth widening, and
spectral attening. Furthermore, there is robustness to dis-
persion and delay. Our goal is to minimize E(a) with re-
spect to the unknown model coe�cients a. This is a highly

2The dispersion provides memory to the nonlinearity. This is
in lieu of an actual handset model which might introduce a more
complex process such as hysteresis.

nonlinear problem with no obvious closed-form solution. An
approach to parameter estimation is solution by iteration,
one in particular being the generalized Newton method [1].
To formulate an iterative solution, we �rst discretize the

continuous Fourier transform, i.e.,

E(a) =

K�1X
k=0

L�1X
l=0

[jS(!l; k)j � jY (!l; k; a)j]
2 (4)

where L is the discrete Fourier transform length. We then
de�ne the residual vector f(a) by

f(a) = [f0(a); f1(a); :::fK(a)] (5)

where fk(a) = [jS(!l; k)j � jY (!l; k; a)j] l = 0; 1; :::L � 1.

The error in (4) is a scalar function that can be interpreted
as the sum of squared residuals over all frames, i.e.,

E(a) = f
T
f(a) (6)

where T denotes matrix transpose. The gradient of E(a)
is given by rE = 2JT f where J is the Jacobian matrix of
�rst derivatives of the residual equations, i.e., the elements
of J are given by

Jij =
@fi

@aj
(7)

where fi is the ith element of f(a). The generalized3 New-

ton iteration [1], motivated by the �rst term of a Taylor
series expansion of f(a), is given by adding to an approxi-
mation of a at each iteration a correction term, i.e.,

am+1 = am + ��am (8)

where �am = �(JTJ)�1JT f(am) with f evaluated at the
current iterate am, and where the factor � scales the cor-
rection term to control convergence.
One of the most important computational elements of

the iterative solution is the calculation of the Jacobian J,
and thus the partial derivatives in (7). For the residual
de�nition of (5), there is not a closed-form expression for
the gradients. Nevertheless, an approximate gradient can
be calculated by �nite-element approximations. It follows
that one algorithm is given by the steps (Figure 2)

(1) Initiate with a parameter vector a
0
, representing no

nonlinear distortion (straight line) and impulses for the
linearities, i.e., an identity. Compute the short-time
Fourier transform magnitude jS(!l; k)j of the measure-
ment s(n).

(2) Compute the short-time Fourier transform magnitude
jY (!l; k; amj of the synthesized model output based on
the current am, i.e., of the signal

ym(n; am) = Qm[gm(n) � x(n)] � hm(n)

and form the residual vector f(am).

(3) Compute an estimate of the partial derivative of the
elements of the residual vector f(a) evaluated at the
current value of a = am with respect to each element

3When the number of equations equals the number of un-
knowns, the generalized Newton method reduces to using a cor-
rection �u = �J�1f which is the standard Newton method.
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Figure 2: Iterative magnitude-only estimation

of a. This requires recalculating y(n; am) for each per-
turbed component of am and computing its short-time
Fourier transform magnitude. Using a �rst backward
di�erence, the partial derivative estimate of (7) for each
element of a is given by

@fi

@aj
�
jY (!i; a0; a1; :::aj + �:::)j � jY (!i; a0; a1; :::aj :::)j

�

where � is a small perturbation.

(4) Based on step (3), form the Jacobian, compute the
correction term, and update the parameter vector with

am+1
= am + ��am

In general, there will not be a unique solution in �tting
the representation (1) to a measurement, even if the mea-
surement �ts the model exactly. One problem is the ambi-
guity of scale. For example, the coe�cients of the polyno-
mial nonlinearity can always account for an input scaling

by c, i.e., y(n) =
PP

k=0
qk[cx(n)]

k =
PP

k=0
q̂kx

k(n) where

q̂k = qkc
k. To remove this particular ambiguity, we invoke

constrained optimization. Under the assumption that all
handsets eventually saturate, for the purpose of removing
solution ambiguity, as well as controlling the size of the
residual vector and thus yielding more consistent results
across an utterance, limiting is introduced to the output
of the nonlinear operator by Q[z] = sgn[z] for an operator
input jzj > 1. In addition, three boundary constraints4 are
imposed given by y(0) = 0, y(1) = 1, and y(2) = �1, thus
reducing the number of free variables by three.
In Figure 2 we have written the measurement as \CB",

denoting a carbon-button handset output, and the undis-
torted reference as \EL" denoting an electret handset out-
put. This was done because our ultimate goal is not neces-
sarily a handset model but rather a handset mapper5 for the
purpose of reducing handset mismatch between high- and
low-quality handsets. In particular, our reference signal is
the highest-quality electret (EL1) and the measurement the
lowest-quality carbon (CB3) from HTIMIT [5]. We will re-
fer to this transformation as a \forward mapper", having
occasion to also invoke an \inverse mapper" from the low-
quality carbon to high-quality electret.

4These boundary constraints, as well as the limiting opera-
tion, are conjectures of the underlying handset mechanism and
are currently being re�ned.

5Because we assume distortion introduced by a high-quality
electret handset is linear, our model of a handset, i.e., a nonlin-
earity sandwiched bewteen two linear �lters, is also used for the
handset mapper.
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Figure 3: Example of electret-to-carbon button mapping: (a)
electret waveform output; (b) carbon-button waveform output;
(c) electret-to-carbon mapped waveform; (d) comparison of all-
pole spectra from (a) (dashed) and (b) (solid); (e) comparison of
all-pole spectra from (b) (solid) and (c) (dashed) .

4 EXAMPLE HANDSET MAPPER

An example of mapping a EL1 handset to a CB3 handset
output is shown in Figure 3. The \training" data consists of
1.5 seconds of a male speaker from HTIMIT, analyzed with
a 20ms Hamming window at a 5ms frame interval. The pre-
�lter and post�lter are both of length 5 and the polynomial
nonlinearity of order 7. Figures 3a and 3b show particu-
lar time slices of the original electret and carbon-button
outputs, while Figure 3d shows the disparity in their all-
pole spectra, manifested in phantom formants, bandwidth
widening, and spectral attening. Figure 3c gives the wave-
form resulting from applying the estimated mapper to the
same electret output but in a \test" region of the utter-
ance outside of the 1.5s training interval, while Figure 3e
compares the carbon-button all-pole spectrum to that of
mapping the electret to carbon-button output, illustrating
a close spectral match.
The characteristics of the mapper estimate are shown in

Figure 4. Convergence is achieved after about 500 itera-
tions, as seen in the training error. The post�lter takes on
a bandpass characteristic, while the pre�lter (not shown) is
nearly at. The nonlinearity is convex which is consistent
with the observation (compare Figures 3a and 3b) that the
carbon-button handset tends to \squelch" low-level values
relative to high-level values. An important parameter in
determining the mapper characteristic is the energy of the
input signal. The mapper is designed using a particular in-
put energy level; with a nonlinear operator, changing this
level would signi�cantly alter the character of the output.
Therefore, test signals are normalized to the energy level of
the training data; this single normalization, however, may
over- or under-distort the data and thus further considera-
tion of input level is needed.
We can determine the performance of the mapper by com-

puting a smooth spectral distance, of the form in (4), be-
tween an original measurement (carbon) and its correspond-
ing reference (electret) before and after being mapped. Fig-
ure 4d shows this measure for the mapper of Figures 4a and
4b applied to 20 seconds of a male utterance, the �rst 1.5s
being the original training data. We see that the spectral
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Figure 4: Characteristics of forward and inverse handset map-
pings: (a) nonlinearities, (b) post�lters, and (c) training error:
forward mapper (solid)/inverse mapper (dashed); (d) testing er-
ror for forward mapper: no mapping (dashed)/mapping (solid).

distance reduction is preserved across the entire utterance.
Similar reduction in spectral distance is seen when applying
the mapper to other carbon-button test utterances within
HTIMIT.
Heretofore, we have described the forward EL1-to-CB3

mapper. We can also design an inverse CB3-to-EL1 map-
per simply by interchanging the reference and measurement
waveforms. In this design, all speci�cations are the same
except that the nonlinearity is of order 9 to account for a
longer polynomial expansion observed in the inverse to the
measured forward mapper. The inverse design is superim-
posed on the forward design in Figures 4a-4c. One notable
observation is that the inverse nonlinearity is twisting in
the opposite (concave) direction to that of the (convex) for-
ward mapper, consistent with undoing the squelching im-
parted by the carbon-button handset. Although the inverse
is sometimes able to remove the spectral distortion of phan-
tom formants, bandwidth widening, and spectral attening,
we have found on the average the match to be inferior to
that achieved by the forward design.

5 SPEAKER RECOGNITION EXPERIMENTS

One goal of handset (mapper) estimation is to eliminate
handset mismatch between training and testing data to im-
prove speaker recognition over telephone channels. The
strategy is to assume two handset classes: high-quality
(electret EL1) and low-quality (carbon-button CB3) from
HTIMIT. We then design a forward EL1-to-CB3 mapper
and an inverse CB3-to-EL1 mapper and apply the mappers
according to handset detection [5] on training and testing
data from another database (e.g., switchboard). Currently,
we map only test data under a mismatch condition. Re-
sults are shown in Figure (5) using the 1996 NIST Speaker
Recognition switchboard corpus [3] for di�erent (NT) and
same (TR) phone number training and testing cases. Re-
sults of using only the forward mapper are shown, illus-
trating signi�cant improvement under the di�erent phone
number condition, and almost no change under the same
phone number condition. With the additional use of the
inverse mapper, further improvement was obtained for the
di�erent phone number condition, while some degradation
in performance was found for the same condition. Similar
performance trends were seen also on the 1997 NIST corpus
[3] for the subset on which the mapper was applied. Un-
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Figure 5: DET curves for 1996 NIST evaluation.

like on the 1996 NIST corpus, however, this performance
gain was averaged out on the entire database due to the far
smaller number of mismatch cases.

6 FUTURE

One current goal is to improve spectral matching with the
forward and inverse handset mappers. The model is be-
ing re�ned by generalizing to nonpolynomial nonlinearities
with more physically realizable constraints, while estima-
tion is being investigated with di�erent initial conditions
and improved gradient estimates. Handset classes are being
expanded to include good and bad handsets for each electret
and carbon-button class. Finally, in using the mappers, we
are improving input energy normalization, applying map-
pers to training (as well as testing) data, and exploring al-
ternative strategies in merging with handset detection and
H-normalization [7].
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