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ABSTRACT

In this paper, the acoustic-phonetic characteristics and the
automatic recognition of the American English fricatives are
investigated. The acoustic features that exist in the literature are
evaluated and new features are proposed. To test the value of
the extracted features, a knowledge-based acoustic-phonetic
system for the automatic recognition of fricatives, in speaker
independent continuous speech, is proposed. The system uses
an auditory-based front-end processing and incorporates new
algorithms for the extraction and manipulation of the acoustic-
phonetic features that proved to be rich in their information
content. Several features, which describe the relative amplitude,
location of the most dominant peak, spectral shape and duration
of unvoiced portion, are combined in the recognition process.
Recognition accuracy of 95% for voicing detection and 93% for
place of articulation detection are obtained for TIMIT database
continuous speech of 22 speakers from 5 different dialect
regions.

1. INTRODUCTION

The fricatives form the largest set of consonants in the English
language which has nine standard fricative consonants, namely:
the voiceless fricatives which include the labio-dental /f/ as in
leaf,  the linguo-dental /th/ as in teeth, the alveolar /s/ as in
lease and the palatal /sh/ as in leash and their voiced cognates
/v/ as in leave, /dh/ as in seethe, /z/ as in Lee’s and /zh/ as in
rouge. The ninth fricative is the /h/ which is considered also a
semivowel. These consonants can be distinguished by English-
speaking listeners in identical phonetic contexts, regardless of
whether these contexts are meaningful utterances or nonsense
syllables. Therefore, the features needed for such discrimination
can only reside in the acoustical signal.

Several past studies have investigated such features. References
[9, 11, 12] are examples of some of the earliest studies which
characterize the fricative consonants. Using perceptual
experiments on synthetic speech, analysis of spoken syllables
and primitive recognition experiments, these studies provide us
with much data on the acoustic characteristics of fricatives.
However they have been largely qualitative in nature and relied
on a small set of stimuli produced in few vowel contexts usually
by a single speaker. Later studies [6, 8, 15, 16] have added to
our knowledge about fricatives. However, except for a few

studies, the acoustic characteristics that exist in the literature
are qualitative, relational and speaker dependent. They
characterize the fricatives well from the articulation standpoint
of separate syllables. When it comes to the automatic
recognition of continuous, naturally spoken, speech, a
considerable amount of research is still needed. Some recent
studies [2, 3, 4, 10, 13, 14, 18] have tried to deal with this
problem but more work still needs to be done until we are able
to fully understand the variability of the acoustic characteristics
of the fricative consonants.

In this paper, we discuss the results of our research in this area.
The /h/ phoneme is excluded from our experiments due to its
semi-vowel unique characteristics. The literature’s acoustic-
phonetic features of fricatives are tested carefully for their
information content using different methods of extraction. New
features are proposed and tested as well. Eventually, a complete
fricative recognition system is simulated which incorporates
new algorithms for the extraction and manipulation of the
information-rich features. For space reasons, only the final
results are given. A more detailed discussion of the features
involved, and their characteristics, is given in [1].

2. FRICATIVE RECOGNITION SYSTEM

2.1 Front End Processing

Fig.(1). Block diagram of an auditory-based front-end
signal processing system.

The front-end signal processing that is used in our system is a
biologically-oriented filter-bank system. It is based on the
system developed by Seneff and described in detail in [17]. The
block diagram is given in Fig.(1). The system gives two outputs,
namely the mean-rate output and the Generalized Synchrony
Detector (GSD) output. The front-end Bark-scaled filter bank
consists of 36 filters with 20dB/decade high frequency pre-
emphasis. The reasons for choosing this system are described in
detail in [1].
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2.2 The Recognition Experiments

The system mentioned in this paper is designed using 220
fricatives extracted from continuous speech from the TIMIT
database spoken by 6 speakers, 3 females and 3 males having a
northern dialect of American English. The system is then tested
on 500 different fricatives extracted from the continuous speech
TIMIT database for 22 speakers from 5 different American
dialect regions, namely: northern, western, southern, midland
and New York city dialects. The individual features are tested
separately [1]. After deciding on which features to use, based on
their information content, an automatic recognition algorithm
was developed to combine the different features into a single
decision. The results of this algorithm are described below.

2.3 Acoustic Features Used

2.3.1 Duration and Voicing Detection

The duration of the unvoiced portion (DUP) of the fricative is
used as a voicing detection feature [1, 18]. We developed a
method to detect the absence or presence of voicing in the signal
and hence detect the start and end points. Voicing is manifested
in the output by low frequency energy which is characteristic of
voiced sounds, specially vowels and semi-vowels. Two methods
are developed to detect such energy [1]:

1. The total energy of the lowest 9 filters (less than 1
kHz) in the GSD output. Such output is readily
normalized in the GSD processing and is increasingly
sensitive to periodicity. Call it LOWG.

2. The ratio between the low frequency (below 1.5 kHz)
and high frequency (above 3 kHz) energies in the mean
rate output, normalized with respect to the nearest
vowel. Call it LOWE.

The advantage of using two quantities instead of one is that they
tend to complement each other. If either of them exceeds its
threshold, then phonation is assumed present. Therefore the
DUP is the period where both quantities (LOWG and LOWE)
are below their respective thresholds. Clearly, for a fully
phonated fricative, DUP is equal to zero. If DUP is below a
certain, empirically determined, threshold then the fricative is
assumed voiced, otherwise it is voiceless.

Detected as voiced Detected as unvoiced
Voiced 186 17

Unvoiced 9 288

Table (1). Confusion Matrix for voicing detection
Correct response rate is 95%.

The threshold used for the DUP is about 60 ms. However, if the
DUP is above 100 ms, then, almost surely, the fricative is
voiceless. This is in agreement with Stevens result, who found
60 ms to be a threshold for voiceless detection [18]. The
advantage of using the two features LOWG and LOWE, instead
of just one of them could be confirmed by comparing the
performance of table (1) to those obtained by using either
feature alone. The mean-rate quantity (LOWE) gives 85%

correct response, while the GSD quantity (LOWG) gives 88%.
The  85% obtained from the mean rate quantity (LOWE) is in
agreement with Stevens result of 83%. The 10% improvement
(from 85% to 95%) results from the use of the GSD output with
its powerful periodicity detection ability [1, 17].

2.3.2 Relative Amplitude and Spectral Flatness

Relative amplitude (intensity) (RA) has been suggested in the
literature as a feature to discriminate between sibilants
(alveolars and velars) which have large RA and non-sibilants
(labio- and linguo-dentals) which have small RA. The RA is
defined as: RA yenv yenvi fricative

i all filters
i vowel

i all filters

= ∑ ∑| |
: :

where yenvi is the mean-rate output from the ith filter and
normalization takes place with respect to the nearest vowel.

A better performance is obtained by integrating two properties,
namely: the low relative amplitude and the spectral flatness
which characterizes non-sibilants, in one feature that could be
used solely for the discrimination between sibilants and non-
sibilants. We called this feature the Maximum Normalized
Spectral Slope (MNSS). It is defined as:

{ }MNSS yenv yenv yenv
i allfilters

i i fricative i vowel
i all filters

= − − ∑max ( )| |
:

:
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This feature gave excellent performance and explained the
results obtained earlier by Behrens and Blumstein in their
perceptual experiments [1,3]. A threshold was chosen
empirically to be 0.02 for unvoiced and 0.01 for voiced
fricatives. Thus, if MNSS is greater than 0.02 (or 0.01), the
fricative is detected as a sibilant, otherwise it is non-sibilant. If
MNSS is near the threshold value, we use normalization with
respect to the fricative energy instead of the nearest vowel. The
results are shown in table (2).

Detected as
sibilant

Detected as
non-sibilant

/s/ and /z/ 89 0
/f/, /v/, /th/ and /dh/ 8 83

/sh/ and /zh/ 34 6

Table (2). Confusion matrix for sibilant/non-sibilant
discrimination using the MNSS. Correct rate is 94%.

2.3.3 Spectral Shape and Peak Location

The spectral shape is known to play a major role in the place of
articulation detection of fricatives. Alveolar fricatives are
characterized by a higher lowest spectral peak compared to
palatal fricatives. Since labio- and linguo-dentals have been
successfully detected in the previous section because of their
relatively flat spectrum and low amplitude, the concern in this
section will be on how to discriminate between alveolars and
palatals.

The primary feature that we investigated is the most dominant
peak (MDP) location. Palatals are characterized by a compact



spectrum which has a dominant peak at a relatively low
frequency, compared to the alveolars whose peak is at a higher
frequency, and to the non-sibilants which usually do not have a
significant peak and their most dominant peak is usually at a
higher or much lower frequency. Therefore, this feature could
be useful in extracting palatals. The best performance is
obtained using the GSD output which yielded a better
performance compared to the mean-rate (98.5% versus 91%)
[1].  The results are shown in table (3).

Detected as
palatal

Detected as non-
palatal

/s/ and /z/ 0 89
/f/, /v/, /th/ and /dh/ 0 91

/sh/ and /zh/ 37 3

Table (3). Confusion matrix for palatal detection using
the GSD MDP. Correct response rate is 98.5%.

Another feature which was found to play an auxiliary role in the
discrimination between alveolars and palatals is the Spectral
Center of Gravity (SCG). It describes some properties of the
spectral shape which are not described by the MNSS or the
MDP location. It is defined as:

SCG i yenv yenvi
i all filters kHz

i
i all filters kHz

= ×
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∑ ∑
: . : .1 2 1 2

2.4 Place of Articulation Detection

In the previous section, the different acoustic features
that are needed in the place of articulation detection are
extracted and evaluated separately. In this section, the different
features are combined to form a decision on the place of
articulation. We use 3 main features:

• The Maximum Normalized Spectral Slope (MNSS).
• The Spectral Center of Gravity (SCG).
• The location of the most dominant peak (MDP).

Detected
as alveolar

Detected
as dental

Detected
as palatal

Alveolars:/s/ and /z/ 85 4 0
Dentals: /f/, /v/, /th/,

and /dh/
0 91 0

Palatals:/sh/ and /zh/ 2 0 38

Table (4). Confusion matrix for place of articulation
detection for the 6 speakers (3 males and 3 females)
used in the system design. Correct response rate is 97%.

The algorithm used is explained in Fig.(2). The results of the
place of articulation detection are represented in the confusion
matrix of table (4) for the data used in the design and in table
(5) for new data that were never encountered before by the
system. The recognition rate obtained using this algorithm is
about 97% for the former and 93% for the latter. For multi-
speaker continuous speech recognition, this is a very good result
given the simplicity of the algorithm and the system used.

Detected
as alveolar

Detected
as dental

Detected
as palatal

Alveolars: /s/ and
/z/

188 11 5

Dentals: /f/, /v/,
/th/, /dh/

2 144 6

Palatals: /sh/ and
/zh/

8 2 134

Table (5). Confusion matrix for place of articulation
detection for 22 new speakers, from 5 different dialects,
not used in the system design. Correct rate is 93%.
(alveolars: 92%, dentals: 95% and palatals: 93%).

2.5 Overall Recognition

The voicing detection and the place of articulation detection are
combined in a single system which is capable of differentiating
between fricatives. The results are shown in table (6).

/s/ /f/, /th/ /sh/ /z/ /v/, /dh/ /zh/
/s/ 90 8 2 0 0 0

/f/, /th/ 4 87 4 0 5 0
/sh/ 4 1 92 0 0 3
/z/ 8 1 1 85 2 3

/v/, /dh/ 0 0 0 0 100 0
/zh/ 0 0 9 7 1 83

Table (6). Confusion matrix for fricatives’ detection (in
percentages) for 22 speakers, from 5 different dialects,
not used in the system design. Overall correct
recognition rate is 90%. Rows are inputs, columns are
outputs.

3. CONCLUSION

In our work, the acoustic features characterizing the fricative
consonants are analyzed in detail. Three features proved to be
very useful in detecting the place of articulation, namely: the
Maximum Normalized Spectral Slope (MNSS), the location of
the Most Dominant Peak (MDP) and the Spectral Center of
Gravity (SCG). These features were able to achieve a 93%
recognition accuracy. As for voicing detection, we used the
duration of the unvoiced portion (DUP) of the fricative as the
main cue in detecting voicing. Using two physical quantities to
extract this feature, an accuracy of 95% was obtained.

The obtained results show significant improvement compared to
previous work. Similar experiments, which study the acoustic-
phonetic automatic recognition of fricatives using multispeaker
continuous speech with comparable database size, are quite rare
in the literature. Results obtained by Hughes and Halle [12] for
place of articulation detection of smaller database size (190
fricatives from 5 speakers) gave between 77%-80% recognition
accuracy. They relied mainly on the spectral shape to perform
their recognition. The 93% obtained in our experiments indicate
a significant improvement that is mainly due to the use of new
features, extraction and manipulation algorithms which



integrate several acoustic properties in the decision making
process. In voicing detection, the obtained results show also a
clear improvement over the 83% rate obtained by Stevens et al
[18]. This is in spite of the fact that the database used was
larger, more variable (22 speakers from 5 different dialects
versus 3 speakers in their case) and with continuous speech as
opposed to the controlled utterances that were used in their
experiments. The reason behind this improvement could be
attributed to the improved technique used here for detecting
phonation (periodicity). This is a clear example of how the
translation process from abstract features to physical features
could play a significant role in the recognition performance.

The system developed in this work is meant mainly to test and
evaluate the features extracted and the algorithms used in their
manipulation. Its performance represents a worst-case
assessment. When integrated with a system which involves
more complicated techniques like training, speaker
normalization and variable thresholds, it is expected to give an
even better performance.

Fig.(2). Algorithm for place of articulation detection.
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