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ABSTRACT

A new noniterative subspace tracking method is presented.
This method is called the operator restriction algorithm
(OPERA) and it can be used whenever an update to the
principal components of an EVD or SVD of a rank-one up-
date of a given matrix is needed. The updating algorithms
are based on the technique of restricting a linear operator
to a subspace and the concept of an invariant subspace and
its generalization, a pair of singular subspaces. The accu-
racy of the algorithm is comparable to an EVD or SVD. An
application is made to bearing estimation of highly nonsta-
tionary sources. Flop counts, tracking accuracy and sub-
space accuracy for OPERA are compared with other fast
algorithms and with the EVD.

1. INTRODUCTION

The bearing (DOA) estimation problem treated in this pa-
per arises from J narrowband noncoherent plane waves im-
pinging on a linear array of L sensors spaced one-half wave-
length apart. The sensor outputs are subject to additive
white Gaussian noise. The equation describing this scenario
is

x(k) = Ds(k) + n(k); k = 1; 2; � � � (1)

where x(k), called the `data snapshot', is an L-vector of
array outputs at sampling time, k. The columns of D =
[d1 d2 � � � dJ ] are the steering vectors. Here,

di
def
= [1 exp(j� sin(�i)) � � � exp(j(L� 1)� sin(�i))]

T (2)

A basis for the signal subspace must then be found in order
to use one of the parameter extraction techniques, such as
MUSIC or ESPRIT. The most general (SVD) formulation
of the OPERA algorithm is suitable for tracking principal
left and right singular vectors and their associated singular
values. The EVD version of the algorithm is suitable for
tracking eigencomponents and will be discussed �rst.

2. INVARIANT SUBSPACE UPDATING

An invariant subspace, X, of a linear Hermitian operator,
T , is de�ned to be one for which TX � X. (Any rep-
resentation of T in a particular coordinate system will be
denoted by a di�erent symbol than T .) It can be shown
that any invariant subspace is equivalent to an eigenspace,

i.e. to a subspace spanned by a subset of the set of eigen-
vectors of the matrix. A reduction in the size of the ma-
trix representation of T is possible by restricting T to an
invariant subspace. To illustrate this process, choose the
eigenvectors vi; i = 1; � � � ; P as the basis for the invari-
ant subspace, ~X of T , where ~X is P-dimensional. Since
Tvi = �ivi; i = 1; � � � ; P , in the coordinate system with
the eigenvectors above as a basis for the invariant sub-
space ~X, the matrix representation of the linear operator,
T , can be represented by a P � P matrix, ~A. Further-
more, in this coordinate system ~A is a diagonal matrix:
~A = diag(�1; � � � ; �P ). Now, consider a rank-one update to
T : T +xxH. Then, x can be written as: x = Qx+(I�Q)x,
where Q is the orthogonal projection onto the invariant
subspace ~X and I � Q is its orthogonal complement. Let

Qx =
Pi=P

i=1
�ivi. De�ne z = (I �Q)x = �P+1 ~wP+1 with

�P+1 = kzk and ~wP+1 = z=kzk. Here, ~wP+1 is in general
not an eigenvector. Now, ~wP+1 is assumed to lie in the ker-
nel of T so that in the extended basis fv1; � � � ; vP ; ~wP+1g

for a new invariant subspace X ( ~X � X), T has the rep-
resentation: A = diag(�1; � � � ; �P ; 0). In addition, x =
[�1 � � � �P �P+1]

T in this basis. So, the update T + xxH

can be written in the alternate coordinate system as:
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(3)
If the application here is to subspace tracking for bearing
estimation, x is the data snapshot. In general this data
snapshot might contain a component lying in the comple-
ment of the initial invariant subspace ~X, and thus the in-
crease in the size of ~A by one to a P + 1�P + 1 matrix as
in (3) is necessary in general, because of one or more of the
following:

1. The snapshot is composed of element data which is
corrupted with additive noise.

2. One or more sources are nonstationary and so the
signal subspace is changing.

3. An additional source has appeared.

In the �rst and second cases, the rank of the covariance
matrix doesn't change following an update; in the third



case, the rank increases by one. For details of the algorithm,
see the next section, which discusses the more general SVD
version of OPERA.

3. SINGULAR SUBSPACE UPDATING

The notion of an invariant subspace can be generalized so as
to treat the case of nonsquare matrices. Consider a matrix,
A 2 CM�N and let R = minfM;Ng. Let the SVD of A be:
A = U�V H where U = [u1; � � � ; uM ], V = [v1; � � � ; vN ] and
� = diag(�1; � � � ; �R). The dimensions of � are M � N .
Let Us and Vs denote the matrices consisting of the �rst P
(P � M;N) columns of U and V , respectively. It is clear
that

R(AVs) � Us and R(AHUs) � Vs (4)

where R(A) denotes the column space of A. Thus, although
Us and Vs are not invariant subspaces of A, the inclusion
relations above suggest that a generalization of the invariant
subspace idea [1] may prove useful. We de�ne:

De�nition 1 Let A 2 CM�N and let X 2 CN and Y 2
CM be subspaces of dimension P . Then, X and Y form a

pair of singular subspaces for A if:

1. AX 2 Y

2. AHY 2 X

Let the dimension of the principal subspace (i.e. signal
subspace) be P . Let the left and right principal singular
vectors be u1; � � � ; uP and v1; � � � ; vP , respectively, and let
the corresponding singular values be: �1; � � � ; �P . The ma-
trix update is: B ) B + xyH . The goal is to calculate the
principal singular vectors and singular values of the update
in a coordinate system of reduced dimension. We have that
Bvi = �iui; i = 1; � � � ; P and BHui = �ivi; i = 1; � � � ; P .
Let Su = [u1 � � � ; uP ] and let Sv = [v1 � � � vP ]. The vector
x can be decomposed in the same manner as in the previous

section as: x =
PP+1

i=1
�iui where �P+1uP+1 (kuP+1k = 1)

is the component of x orthogonal to the left principal sub-
space. Let Ux = [Su uP+1]. In a similar manner, let

y be written as: y =
PP+1

i=1
�ivi with Vy = [Sv vP+1]

(kvP+1k = 1).
In terms of the columns of Ux and Vy, the update of the

data matrix can be written in this new coordinate system
as:
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The di�erence between this equation and equation (3) is

that the rank-one update here isn't necessarily Hermitian.
As a consequence, there are two subspaces to be updated;
a left principal subspace and a right principal subspace, as
well as the associated singular values. It should be noted
that of all the subspace updating algorithms presented here,
excluding the full SVD, only the SVD version of OPERA
is capable of tracking distinct left and right principal sub-
spaces simultaneously.

There are 4 main tasks to be performed in one iteration
of the SVD version of the OPERA algorithm; they are:

1. Calculating x and y in the new coordinate system.

2. Calculating the SVD of the update in the new coor-
dinate system.

3. Calculating the updated principal singular vectors in
the original coordinate system.

4. Retaining only those columns of the principal singu-
lar vectors which form a basis for the updated signal
subspace.

These steps are as follows:

1. Let w0 = UH
s x = [�1 � � ��P ]

T , w1 = Usw0 and w2 =
x � w1 with �P+1 = kw2k. Then ~x is x in the new
coordinate system, with ~x = [�1 � � ��P �P+1]

T . Sim-
ilarly, let v0 = V H

s y = [�1 � � ��P ]
T , v1 = Vsy0 and

v2 = y � v1 with �P+1 = kv2k. Then ~y is y in the
new coordinate system, with ~y = [�1 � � ��P �P+1]T .

2. The update equation in the transformed coordinate
system is given above in equation 5. The task here is
simply to calculate the SVD of the updated matrix
in the transformed coordinate system.

3. Let the SVD of the updated matrix in the trans-
formed coordinate system be:

B + ~x~yH = U1�1V
H
1 (6)

The transformation back to the original coordinate
system is simply:

~U = UxU1 and ~V = VyV1 (7)

Here, ~U is M �P and ~V is N �P . The updated sin-
gular values remain unchanged upon transformation.

4. One way to determine the dimension of the new sub-
space using a modelling aproach can be found in [2].
If the dimension of the subspace has been determined
to be unchanged, the appropriate action is to drop
the one column of ~U and of ~V corresponding to the
smallest updated singular value.

Let K = maxfM;Ng. Step 1 takes O(KP ) 
ops as
shown above. In step 2 the SVD of a P +1�P +1 matrix
is calculated, which takes O(P 3) 
ops. The third step as
shown above is O(P 2K). The overall complexity is then
O(P 2K).

4. COMPARISON WITH OTHER

ALGORITHMS

Although OPERA has similarities with the ROSE/ROSA
class of methods [3], and with FAST [4], there are also sig-
ni�cant di�erences, both conceptually and computationally.

Since OPERA updates the signal eigenspace at every
iteration, the closest method in the ROSE/ROSENA class
of methods is ROSE, where the signal eigenspace is tracked.
The method of update for ROSE is an iterative one, how-
ever, [3] and very sensitive to the size of the perturbation
when the signal subspace is nonstationary. The result is
that the signal bearings are required to be slowly vary-
ing. In OPERA, this assumption is not needed because



OPERA is not a perturbation method and so any size up-
date is acceptable. See Figures 2 and 3. It is important to
note that OPERA does not average the signal sigenvalues.
In addition, there is an SVD version of OPERA, whereas
ROSE/ROSENA is restricted only to Hermitian matrices.
In ROSE/ROSA a pairwise Gram-Schmidt orthogonaliza-
tion is recommended to avoid stability problems, whenever
large numbers of updates are needed. With OPERA, this is
not necessary, since the signal subspace basis is derived di-
rectly from an SVD or EVD and is orthonormal to working
precision; see Figures 4 and 5.

In FAST, the basis for the signal subspace being tracked
is only approximately orthonormal, [4]. The principal sin-
gular values are not tracked, but reestimated at each step.
The result is that for nonstationary scenarios, bearings and
signal subspace bases as determined by the FAST algorithm
can be inaccurate, as can be seen in Figures 3 and 5.

Another di�erence is that with FAST the data window-
ing as introduced in [4] is a sliding window and for an array
with L sensors two of the steps in the algorithm vary lin-
early with w, the number of columns in the sliding window.
As SNR decreases and the window size increases to compen-
sate, the complexity of the algorithm becomes dominated
by two terms varying linearly with w. As can be seen in
Figure 1, the result is a larger 
op count for smaller array
sizes, compared to most of the other fast algorithms. In the
SVD version of OPERA, with a sliding window, there are
no steps that depend on the window size, so this is not a
problem.

5. SIMULATIONS

The bearing estimation problem was presented in the intro-
duction; here there are two sources and an 8-element array,
so that J = 2 and L = 8. ESPRIT is used to �nd the bear-
ings for all methods except ROSE, where Root-MUSIC is
used (as is done in [3]). In Figure 1, a simulation show-
ing the computational complexity for 8 subspace tracking
methods is given. Given here are:

� EVD: full EVD.

� OPERA: EVD version of OPERA; this paper.

� FAST: FAST algorithm; see [4].

� PC: see [5].

� PROTEUS-2; see [6].

� PASTD; see [7].

� P-L (Prony-Lanczos); see [8].

� ROSE; see [9].

All the algorithms except FAST track the eigencompo-
nents of the covariance matrix which is updated using an
exponential window, i.e. C ) �C + (1 � �)xxH. Here,
SNR = 0dB and � = 0:96, which is a typical value when
the SNR is low. The FAST algorithm uses a sliding win-
dow, with the window width equal to [1=(1 � �)] where �
is the forgetting factor for the exponential window and [x]
denotes the smallest integer larger than x.

It is important to note that many tracking algorithms
perform poorly when the sources become su�ciently non-
stationary. To illustrate this, use the previous array sce-
nario. In order to remove any e�ects caused by additive

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
3

3.5

4

4.5

5

5.5

6

6.5

7

LO
G

(M
A

T
LA

B
 F

LO
P

S
).

LOG(# ARRAY ELEMENTS)

FLOP COUNTS FOR 8 SUBSPACE TRACKERS

EVD

P-L

FAST

PC

****

**** = OPERA, PASTD, ROSE, PROTEUS

Figure 1: Flop Count vs Array Size for 8 Subspace Trackers.

noise, let the SNR be 1020 dB and assume exponential av-
eraging with the forgetting factor � = 0:1. For the FAST
algorithm, let the number of columns in the sliding window
be equal to 2. These windowings ensure that any resulting
bearing errors are not due to a time lag caused by a large
window size. Let there be two nonstationary signals, start-
ing at 10 and 40 degrees respectively with each increasing
at the rate of 0.4 degrees per iteration, so that the total an-
gular movement over the 100 iteration trial is 40� for each
of the sources. In Figures 2 and 3 it can be seen that the
EVD, OPERA and P-L methods track the changing bear-
ings most closely.
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Figure 2: Bearings from EVD, PROTEUS-2, OPERA and
PASTD.

In the third simulation the subspace errors for the same
8 methods are given in Figures 4 and 5. The subspace error
is de�ned as the norm of the di�erence of the calculated and
exact orthogonal projection matrices, onto the estimated
and exact subspace, respectively. (Here, `exact' is taken to
mean `no noise'.) In this example the SNR is 20dB, with
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Figure 3: Bearings from PC, Prony-Lanczos, FAST and
ROSE.

the two nonstationary sources starting and and increasing
as before, with the same windowing speci�cations.
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Figure 4: Subspace Errors: EVD, PROTEUS-2, OPERA
and PASTD.

6. CONCLUSION

The OPERA algorithm has been presented as a method for
subspace tracking. The theoretical foundations for the EVD
and SVD variations in the algorithm have been discussed,
as well as conceptual and computational di�erences with
other algorithms. From Figures 2-5 it can be seen that the
EVD, OPERA and P-L algorithms are clearly superior in
terms of bearing and subspace accuracy. Of these three
algorithms, it can be seen from Figure 1 that OPERA is
clearly the most e�cient.
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