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ABSTRACT

A system for the visualization of three-dimensional anatomi-
cal data, derived from Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT), enables the physician to navi-
gate through and interact with the patient’s 3D scans in a vir-
tual environment. This paper presents the multimodal human-
machine interaction focusing the speech input. For the con-
cerning task, a speech understanding front-end using a special
kind of semantic decoder was successfully adopted. Now, the
navigation as well as certain parameters and functions can be
directly accessed by spoken commands. Using the imple-
mented interaction modalities, speed and efficiency of the di-
agnosis could be considerably improved.

1 INTRODUCTION

Research on multimodal interfaces is an emerging area of hu-
man-machine communication. It has already been shown for a
few applications that the integration of speech and hand ges-
tures improves effectiveness and comfort of interaction (e.g.
[6], [11]). Most of them concentrate on speech input, with only
a few additional gestures [7]. In the presented approach, users
can interact with a system for the visualization of three-dimen-
sional anatomical data derived from MRI or CT by choosing
from different modalities, e.g. hand gestures, speech, or addi-
tional devices. Depending on the properties of the selected in-
put channel, they can navigate through the virtual scene, use
virtual tools for object exploration and manipulation, and con-
trol visualization and interaction parameters on-line.

Fig. 1: Architecture of the speech understanding front-end and
an example for the speech interaction with the system
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2 SPEECH UNDERSTANDING

The speech understanding task is to convert a speech signal
into an application-specific code, denoted as user’s intentionI.
A signal preprocessing (or ’feature extraction’) module cre-
ates 64-dimensional observation vectors (or ’feature vectors’)
in intervals of 10 ms, each of them describing the spectral
characteristics of the speech signal contained in a 25 ms-wide
window. Similar to current speech recognition systems, the
observation sequenceO is used as input for stochastic pattern
matching. As proposed in [14], we use a system architecture
with a purely stochastic semantic decoder, as shown in fig. 1.

2.1 Semantic Decoding

The semantic decoder converts a spoken utterance (given as
observation sequenceO) into its semantic representation (de-
noted as semantic structureS). From the set of all possibleS,
that oneSE has to be found which is the most probable given
the observation sequenceO, i.e. which maximizes the a-po-
steriori probabilityP(S|O). The resulting term can be trans-
formed using the Bayes formula. SinceP(O) is not relevant for
maximizing, it can be neglected:

(1)

Due to the high variety ofO andS, it is not possible to estimate
P(O|S) directly and additional representation levels are neces-
sary. Clearly defined are the word chainW and the phoneme
chainPh, which can be used to calculateSE [12]:

(2)

Eq. (2) is the maximum a-posteriori (MAP) formula, which is
implemented ’top-down’ for finding that semantic structure
SE, which is the most likely combination of any semantic
structureS, any word chainW, any phoneme chainPh and the
given observation sequenceO. In the above equations, we as-
sume statistical independence of all probabilities, which are
stored in four stochastic knowledge bases (called "models"):

• The semantic model delivers the a-priori probabilityP(S)
for the occurrence of a semantic structureS.

• The syntactic model delivers the conditional probability
 for the occurrence of a word chainW given a cer-

tain semantic structureS.
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• The phonetic model delivers the conditional probability
 for the occurrence of a phoneme chainPh given

a certain word chainW.
• The acoustic model delivers the conditional probability

 for the occurrence of an observation sequenceO
given a certain phoneme chainPh.

Phonetic and acoustic models are not necessary to decode
written text, since in case of written input (i.e. word chainW)
eq. (2) can be simplified to

. (3)

A detailed description of the semantic decoder, which is im-
plemented as an incremental ’top-down’-parser combining a
modified Earley-parsing [2] and a Viterbi-beam-search [16]
algorithm, as well as the consistent integration of all stochastic
knowledge can be found in [13] and in [15].

2.2 Semantic Structure

Thesemantic structure S was introduced as semantic represen-
tation of an utterance within a restricted domain [9]. It is hier-
archic like a tree, which consists ofn semantic units (abbrevi-
atedsemuns) sn :

(4)

Each semunsn can be described by (X+2) components, its type
t[sn], its valuev[sn] and  references to its successors
q1[sn] , …, qX[sn] ∈ {sn + 1 , …, sN , blk} :

(5)

• The type t[sn] lays down the numberX of successors and
restricts the set of possible successor-types
t[q1[sn]], … , t[qX[sn]]. Furthermore, it makes a selection
of the corresponding valuesv[sn].

• Thevalue v[sn] shows the exact meaning ofsn.
• Eachsuccessorqx[sn] specifies a certain fact of the semun

sn. If the utterance contains that certain specification, the

Fig. 2: The ’top-down’ principle for semantic decoding
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successorqx[sn] is identical with another semun withinS.
In that case, the successor is denoted assuccessor semun

qx[sn] ∈ { sn+1, … , sN}. (6)

If the utterance does not contain that certain specification,
then it is ablank successor

qx[sn] = blk. (7)

For the consistent description of our stochastic approach, it
is necessary to allow a type for the blank successor:

t[blk] = blk (8)

The whole semantic structureS forms a ’tree’ with the semun
s1 as ’root’ and the blank successors as ’leaves’. All semuns

 belong to exactly one predecessor semun. Fig. 3
shows an example for a concrete semantic structureS1 of the
described domain in a graphic depiction:

2.3 Collection of Training Data

During their multimodal interaction with the visualization sys-
tem, several subjects (who are specialists for using the system)
should clearly speak any commands even if the system would
not react on these spoken inputs. In this way, all the subjects
are forced to speak within a realistic environment. We thereby
recorded 1123 different and authentic spoken utterances in
German language by observing eight different subjects.

Due to existing acoustic-phonetic models (trained with spoken
GermanPhonDat utterances), only semantic and syntactic pa-
rameters are relevant for the calculation the probabilitiesP(S)
and P(W|S). Hence, each utterance was manually converted
into the corresponding word chainW and the corresponding
semantic structureS.

In the first initialization step, the probabilities have been esti-
mated by counting the occurring frequencies over the training
set. A succeeding iteration step tries to optimize semantic and
syntactic ambiguities to improve the probabilities. The itera-
tion is repeated until the maxima ofP(W|S) and P(S) are
reached [10][15].

2.4 Intention Decoding

Since it is not possible to directly control the application by a
semantic structure, the intention decoder has to transform each
semantic structure into an application-specific code, denoted
asuser's intention I. The application is controlled by gestures,
e.g. generated by hand or, like in our case, by speech. Thus, the
command that represents the intentionI must be a gesture, too.
As shown in the next figure, the intention decoder consists of
two sub-modules:

Fig. 3: Semantic structureS1 corresponding to the utterance
"enlarge the transparency of the left kidney three times"
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The preprocessor is necessary to correct inconsistencies in
the semantic structure, which occur due to the assumption that
each word in the word chain has to be assigned to one single
semun [9][10], e.g.

• insertion of missing and necessary information (e.g. the se-
mun of the relevant object),

• deletion of redundant information (e.g. all semuns after an
irrelevant "garbage semun").

The task of thecompiler therefore is to translate anested se-
mantic structureSP into a linear code within the application-
specific language. Since a main part of a semantic structure’s
information is held in thetopology of the tree, it is not possible
to transform each semun individually into one block of the
output code. The compiler compounds all pieces of informa-
tion with the result of a gesture by the use of a-priori knowl-
edge about types, values and the topology ofSP.

As the compiler has to translate ambiguous or incomplete ut-
terances, there are features, which look for the most probable
intention or insert missing information. There are two main as-
pects of context:

• Environment constellation (e.g."stop" can mean"stop the
movement" or "stop the running segmentation"),

• dialogue progression (e.g. the speaker does not repeat in-
formation mentioned one or more utterances before).

The contextual situation enormously influences the speaker’s
behaviour. In certain constellations, it is not necessary to ex-
press all information by speech. This aspect is considered by a
feedback channel from the application to the compiler. The ap-
plication is now able to provide relevant information for the
compiler. Thus, information can be requested and missing nec-
essary knowledge can be completed.

To gain any important information from dialogue progression,
a dialogue history is implemented: Previous utterances are
stored in several classes depending on the kind of statement,
e.g. "start-command" or "change-command". In this manner,
requested information can be returned in a differentiated and
effective way.

3 INTEGRATION IN VIRTUAL REALITY

3.1 Visualization

The visual channel is the major output channel for virtual real-
ity (VR). Especially the depth perception is a great benefit of
VR displays. To provide a non-flickering representation and to
minimize the time delay between user actions and system re-
actions, a frame rate of about 15 Hz has to be achieved. For the
stereoscopic representation, the virtual scene has to be ren-
dered for each eye separately. This means that for the require-
ments of medicine with very large data sets, even today‘s high
performance graphics systems are the bottleneck for image
processing and display. But as especially in medical applica-
tions no information must be distorted or lost, advanced visu-

Fig. 4: Block diagram of the intention decoder
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alization methods are necessary to fulfil the requirements of
speed and accuracy.

There are two different types of data to be rendered: 3D tex-
tures (transparent greyscale data from CT or MRI, represented
as a stack of 2D slices [1]) and polygonal surface meshes
(tools, utilities and segmented medical objects). The ability to
apply both volume- and surface-rendering at the same time
(hybrid visualization [3][5]) allows to make use of the advan-
tages of both techniques. The user can look at the original to-
mographic greyscale data at any time. This avoids loss of in-
formation due to the previous segmentation and triangulation
steps. For purposes like quantitative evaluations, surgical
planning or simulation, the surface rendered, segmented ob-
jects are necessary.

3.2 Multimodal Interaction

Each interaction device provides the application process with
a subset of predefined gestures. In this context, a gesture can
be regarded as a user action, which is mapped to application
commands. For example, it can be a hand gesture (e.g. making
a fist), a speech gesture (e.g. spoken command), or a button
gesture (e.g. button click).

Concerning the speech understanding task, this means that the
result of the intention decoding process is treated in the same
way as a recognized hand gesture from the data glove or a but-
ton click of the 3D mouse. Within each frame, all gesture gen-
erating sources like hardware devices, speech understanding,
hand gesture recognition [8] or virtual menus are polled, and
the returned gestures are collected and evaluated. The gesture
source makes no difference to its effect on the application. For
example, it is possible to accelerate a virtual flight by a spoken
utterance, a hand gesture, or a 3D mouse.

This multimodal approach allows the user to choose that input
channel, which appears to be most appropriate in a given situ-
ation. Speech understanding is capable of providing the most
extensive subset of defined gestures, covering following areas:

Fig. 5: Various input devices allow multimodal interaction. User
actions are translated into uniform gestures.
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Navigation: The user can start and stop flights through the vir-
tual world, change the flight direction and control velocity and
acceleration (e.g."slow down"). Collision detection and a
pathfinder utility allowing guided navigation through objects
(e.g. in virtual endoscopy) can be switched on and off. Fur-
thermore, it is possible to be placed at a marked position or to
mark the current position.

System and application parameters: There is a wide variety
of parameters for the adjustment and control of the visualiza-
tion task. Some system parameters like the desired frame rate
or the dynamic video resolution factor of the monitor system
can be directly controlled. The display of graphic pipe statis-
tics can be switched on and off for each graphics channel (e.g.
"show me the current frame rate"). Further functionalities like
the visualization of bounding boxes, bounding frames around
volume slices, or changing between polygon filling styles
(wireframe, filled, scribed) can be chosen. Also, the global ac-
curacy of the polygonal meshes (level of detail) or the 3D tex-
tures (voxel resolution, number of interpolated slices) can be
influenced. Additionally, some basic application control (e.g.
quit, reset, undo, start glove calibration, load/save parameters)
can be performed by speech gestures.

Tools and utility functions: There are numerous tools and
utilities to explore and manipulate the medical data in the vir-
tual scene. A simple feature is to take snapshots of the scene
and save them in a file. Another tool is the virtual probe, a
plane to visualize cuts through the tomographic data at any po-
sition and in any orientation. This is very helpful to diagnose
e.g. the internal structure of a tumour or blood flow in an aneu-
rysm. With spoken commands, it is possible to switch this
probe on and off, to adjust its size, and to change itsz-buffer
representation (permanently in the foreground or being oc-
cluded by other objects). Furthermore, segmented objects or
data volumes can be switched on and off, and their appearance
can be controlled (e.g. size, level of detail, transparency, col-
our). The ability to switch 3D menus on and off is very help-
ful, too. The menu structure gives the user further access to pa-
rameters and functionalities of the application. For example,
sliders allow to control exact values of parameters, buttons can
switch tools or values on and off, and displays allow to moni-
tor variables, messages or the user‘s current location in VR.

More sophisticated tools have been developed to support the
whole image analysis process, especially the laborious image
segmentation [8]. The user can switch to different segmenta-
tion modi (automatic, volume growing or model based seg-
mentation [5]) easily by spoken commands like"I want to use
the volume growing segmentation", resulting in a gesture
"VOLGROW_ON". To reduce data in the 3D texture buffer
and thus enable enhancement of the volume data resolution,
the tomographic data sets can be reduced to the region of inter-
est using a scalable clipping box, which cuts off all parts of the
data volume outside the box. For the volume growing segmen-
tation method [4], it is possible to restrict the area by setting
barriers. The algorithm is prohibited to pass those barriers.
Their location, orientation, size and shape can be controlled by
speech as well as by hand gestures. As next step, a seed voxel
can be placed inside the tomogram, marking the start position
for the volume growing algorithm. The segmentation can be
started by a command like"start the segmentation now".

4 RESULTS

After the training described in chap. 2.3, the semantic and syn-
tactic models contain 26 different types, 112 different values
and about 1900 probabilistic parameters. To evaluate the
grammar, the semantic structures of the utterances were de-
coded according to eq. (3). The acoustic-phonetic modelling
problem was left aside, so the word chainW was the input of
the parser and the factors  of eq. (2) were
omitted. The reclassification (conversionW→S) of all 1123
training utterances results in 99.8% semantic accuracy (correct
semantic structures) and 99.9% semun accuracy (correct se-
muns). Since we achieved a perfect (rule based) conversion
S→I, the intention decoding accuracy amounts to 100.0%.
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