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ABSTRACT

Computing optical 
ow is one of the most fundamen-

tal problem to the motion image analysis. Many methods

have been proposed for computing optical 
ow, among them

gradient-based methods are the most well-known and most

used. In the paper, a new gradient-based method for the

computation of optical 
ow is proposed. In this method,

optical 
ow is computed by minimizing a weighted least-

squares error estimator for a constant motion vector model

in a local spatial neighborhood, where the weight of each

image location in the neighborhood is determined by its

multiple constraints. Several experiments on real and syn-

thetic image sequences have been carried out to verify the

e�cacy and the reliability of the new method.

1. INTRODUCTION

Early days' computer-based vision systems had been

constrained to static image analysis due to the memory

and processing limitations of the computers. However, sig-

ni�cant advances in computer hardware have enabled the

computer systems to analyze motion image sequences and

interpret complex three-dimensional(3D) scenes[1]. Motion

image analysis has become one of the most important and

most studied subject in the �eld of computer vision dur-

ing the last two decades because it has many advantages

comparing to static image analysis. Motion image analysis

systems are much more comparable to human-vision sys-

tems because man is always in a moving environment or in

the motion of his own; A motion image sequence provides

much more information than a single picture and some lost

information in static images, such as objects' moving speed

and 3D structure, etc., may be recovered through motion

image analysis.

Optical 
ow, the two-dimensional motion vectors �eld,

arises from the relative motion between an observer and

objects in the environment. Once determined, optical 
ow

can give useful information about 3D motion structure of

the objects and spatial arrangements of the environment[2].

The computation of optical 
ow is one of the most funda-

mental and important subject in the �eld of motion image

analysis and a wide range of applications, such as robot

vision, auto-navigation can be its potential bene�ciaries.

However, computing optical 
ow is still far from complete

and remains challenging because the computation is intrin-

sically a�ected by such di�culties as motion discontinuities,

noise in image intensity and occlusion between di�erent

moving objects and between moving objects and station-

ary background[3].

Many methods for computing optical 
ow have been

proposed and others continue to appear. Of them, gradient-

based methods, which compute optical 
ow from image

intensity's gradients, are the most well known and most

used[4]. In this paper, a new method for computing optical


ow has been proposed. The new method is the combina-

tion of two gradient-based methods, one is multiple con-

straints method and the other is weighted local spatial op-

timization method. In the proposed method, multiple con-

straints are �rstly derived for each image location, then the

constraints are applied to multiple image locations by im-

plementing weighted least-squares �t to a constant model

of motion vector in each spatial neighborhood.

The organization of the paper is as follows. In section

2, we will present multiple constraints method and investi-

gate its advantages and disadvantages. In section 3, we will

explain weighted local spatial optimization method brie
y

and point out its problems. The new method and its algo-

rithm will be presented in section 4. To verify our method,

several experiments have been carried out and the results

are shown in section 6. Finally, the paper will be concluded

in section 7.

2. MULTIPLE CONSTRAINTS METHOD

Gradient-based methods are based on gradient constraint

equation, which relates image intensity's gradients to the

two components of motion vector

Exu+Eyv +Et = 0; (1)

where Ex, Ey and Et are image intensity's spatial and

temporal gradients; u and v are motion vector's two com-

ponents along x and y axes. Di�erencing equation (1) with

respect to x and y we obtain two new equations,

Exxu+Eyxv = �Etx

Exyu+Eyyv = �Etx: (2)

Added with equation (1), three constraint equations

forming an over-determined set can be obtained for two

unknowns u and v [5],
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Therefore, motion vector ~v = (u; v)t at image location
(x; y) can be solved as

~v = (A
t
A)
�1

A
t~b: (4)

Multiple constraints method has many advantages com-
paring to other gradient-based methods. For each image
location, the number of constraints is enough for determin-
ing motion vector uniquely, so optical 
ow can be computed
with high spatial resolution; Multiple constraints method is
able to provide robust computation of optical 
ow because
it is based on a noise-insensitive over-determined system.

However, there is a fatal problem in this method. When
there are inconvenient or incorrect constraint equations in
multi-constraints, it is necessary to detect and eliminate
these \ill-posed" constraints from further computation oth-
erwise the computed optical 
ow will tend to be in low
reliability. In the method above, however, each constraint
equation is equally used and no arguments exist to examine
its \well-posedness".

3. WEIGHTED LOCAL SPATIAL

OPTIMIZATION METHOD

Examining gradient constraint equation (equation (1)),
we can see that the equation is in two unknowns (u, v).
Therefore additional constraints are necessary for the gradient-
based methods which use only gradient constraint equation

for each image location.

Weighted local spatial optimization (WLSO) method
introduced in another constraint that assumes optical 
ow
is locally constant in a small spatial neighborhood. In Lucas
and Kanade's[6], optical 
ow is computed by implementing
a weighted least-squares �t to a constant motion vector in
the spatial neighborhood 
 and minimizingX
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where wi denotes the weight function which allocates
di�erent weights to di�erent image locations in the neigh-
borhood. Motion vector is then solved as
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WLSO method is famous for its simple structure and
e�cient computation because of its implementation of the
least-squares method. However, the problem is that the

least-squares method is computational e�cient but non-
robust. In this method the quadratic error term weighs
heavily the contributions to the \optimal" solution from
the data points which have large residual error[7]. Which
means, whenever the gradient constraints are incorrectly es-
timated or there are motion discontinuities in the neighbor-
hood, the WLSO method will always result in high-error-
level optical 
ow.

4. APPLYING MULTIPLE CONSTRAINTS TO

MULTIPLE IMAGE LOCATIONS

In this section, we will propose a new method for com-
puting optical 
ow. The method applies multiple constraints
to multiple image locations with the assumption of local
constancy of optical 
ow. Firstly, for each image location
in a spatial neighborhood, the \well-posedness" of its con-
straints is examined and image locations whose constraints
are considered \ill-posed" will be eliminated from further
computation; Secondly, WLSO method is implemented to
compute optical 
ow using the remained image locations,
and the weights are determined according to their compu-
tational reliabilities.

The rest of this section is consisted of two parts. Hessian
matrix, which if used to examine the \well-posedness" of
image locations' multi-constraint, will be �rstly introduced.
In the second part, we will present the algorithm of the
proposed method.

4.1. Hessian Matrix

Rewrite equation (2) as�
Exx Eyx

Exy Eyy

��
u
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�
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where the coe�cient matrix at the right side of the equation
above is denoted as Hessian Matrix

H =

�
Exx Eyx

Exy Eyy

�
: (8)

Nagel and Enkelmann pointed out that the numerical
stability of the computation of optical 
ow is guaranteed
when the inversion of H is numerically stable (Nagel [8]).
This condition is ful�lled when the determinant of H, dH ,
is large and the conditioning number cH of H is close to 1.
Since H is symmetric (Exy = Eyx), it follows that

cH =

����min
�max

���
where �min and �max are the two real eigenvalues of H

with smaller and largest absolute value, respectively.
Consequently, it is evident that dH large and cH � 1

imply numerical stability in the computation of optical 
ow
vectors.

4.2. Combining Hessian Matrix with WLSO : Al-

gorithm

The characteristics of Hessian matrix suggest us a new method
that applies multiple constraints to multiple image locations



by combining Hessian matrix with Weighted Local Spatial
Optimization method.

In this method, \well-posedness" of each image loca-
tion's multiple constraints is �rstly examined according to
the value of the determinant of its Hessian Matrix, dH ;
after the \ill-posed" being eliminated, optical 
ow is com-
puted by using WLSO method, where the weight of each
remained location is de�ned as the conditioning number,
cH , of its Hessian Matrix.

The algorithm of the new method is shown as follows:

1. Given a local spatial neighborhood (
) within which
optical 
ow is assumed to be constant, for each image
location in the neighborhood we examine its Hessian
matrix:

if

dH < t1 t1 : threshold of dH

then

exclude the location from further computation.
elseif

�max > �min > t2 t2 : threshold of �

then

use cH =
�
� �min
�max

�
� as the weight, w, of the

location and proceed to step 2.
else

set the weight of the location be zero, w = 0:0.

2. Repeat step 1. until all the image locations in the
neighborhood have been examined;

3. Compute optical 
ow within the local neighborhood
using WLSO method, the weight of each image loca-
tion is de�ned as the value of cH . 2

Comparing to the original multiple constraints method
and weighted local spatial optimization method, the new
method has several advantages.

In the new method, Hessian matrix has been used as the
criterion to evaluate the \well-posedness" or the reliability
of multiple constraints. As Hessian matrix is highly related
to the intensity distribution around the image location, it
can be understood that the new method computes optical

ow considering not only the motion constraints but also
the image intensity distribution in the image.

Because of the exclusion of the \ill-posed" image loca-
tions, which always lead to large residual errors, WLSO's
least-squares estimator will be a�ected less and the method
is expected to be more robust. Moreover, instead of sim-
ply giving heavier weights to the center than the periphery
within the local neighborhood implemented in the original
WLSO method, the new method gives higher weights to the
image locations whose gradients constraints have higher nu-
merical reliability.

5. EXPERIMENTAL TECHNIQUES

To examine the performance of the new method, several
experiments have been carried out on real image sequences
and synthetic sequences for which optical 
ows were known.
Before presenting the experimental results, we will describe
brie
y the image sequences used in the experiments.

5.1. Synthetic Image Sequences

The main advantage of synthetic inputs is that we have the
access to the true optical 
ow and can therefore quantify
the performance. Our synthetic image sequences include:

Sinusoidal Inputs : This is about a rotating sinusoidal
plane and the rotating velocity is ! = 0:5 degrees per
frame.

Translating Planers : The sequence is consists of two
di�erent translating planers. The planar on the left
is moving with velocity v1 = (0:0;�0:8) pixels/frame
and the other planar is translating with velocity v2 =
(0:0; 1:0) pixels/frame.

rotating sinusoidal plane

translating planers

Figure 1: Frames from synthetic image sequences and their
true optical 
ows

5.2. Real Image Sequences

Two real image sequences, shown in �g.2, were also used:

Dilational Sequence : The sequence was taken while the
camera moving along it's line of sight toward the table
near the center of the image. Image velocities are
typically less than 1 pixel/frame.

Hamburg Taxi Sequence : In this street scene there were
four moving objects: 1) the taxi turning the corner;
2) a car in the lower left, driving from left to right;
3) a van in the lower right driving right to left; and
4) a pedestrian in the upper left. Image speeds of the
four moving objects are approximately 1.0, 2.0, 3,0,
and 0.3 pixels/frame respectively.

The dilational sequence is taken by the authors and the
Hamburg Taxi sequence was provided courtesy of the Uni-
versity of Hamburg.



Hamburg Taxi Sequence Dilational Sequence

Figure 2: Frames from real image sequences

5.3. Error Measurement

Following [4] we used an angular measure of error. Let
velocities ~v = (u; v)

t
be represented as 3D direction vectors,

~V �
1

u2+v2+1
(u; v; 1)t. The angular error between the true

velocity ~Vt and an estimate ~Ve is

�E = arccos(~Vt � ~Ve): (9)

6. EXPERIMENTAL RESULTS

In comparing the performance of the proposed method and
two original methods , we concentrate on computing time,
error statistics and the density of computed optical 
ows.

rotating sinusoidal plaid

Technique Cost(s) Average Error Density

Tretiak, Paster[5] 7.60 58.366� 0.974
Lucas, Kanade[6] 3.84 34.777� 0.991
Proposed method 5.06 19.798� 0.919

translating planers

Technique Cost(s) Average Error Density

Tretiak, Paster[5] 7.57 4.462� 0.709
Lucas, Kanade[6] 3.81 0.655� 0.894
Proposed method 5.20 0.619� 0.857

Table 1: Summaries of the results on synthetic sequences

From Table 1 we can see that, although there is no
signi�cant di�erence of the processing time and the density
among the three methods, the proposed method provides
the measurements with the lowest average angular errors.
That means, our method is able to provide more reliable
measurements for the computation of optical 
ow.

For the real image sequences, we compute optical 
ows
in three steps. The original sequences were �rstly smoothed
using a 3D Gaussian �lter to reduce the existing noise;
The proposed method was then applied to the smoothed
sequences for the computation of optical 
ow; Finally, com-
puted optical 
ows were again smoothed with a 2D Gaus-
sian �lter.

Hamburg Taxi Sequence Dilational Sequence

Figure 3: Computed optical 
ows for real image sequences

7. CONCLUSION

In this paper, we proposed a new method, which ap-
plies multiple constraints to multiple image locations, for
computing optical 
ow of motion image sequences.In this
method, optical 
ow was computed by minimizing a weighted
least-squares error estimator for a constant motion vector
model in a local spatial neighborhood, where the weight of
each image locations in the neighborhood was determined
by its multiple constraints.

E�cacy and reliability of the proposed method were
veri�ed through several experiments on real and synthetic
image sequences.
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