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ABSTRACT

This paper presents a new method for designing two channel
biorthogonal IIR �lter banks, which satisfy both the perfect
reconstruction and causal stable conditions. The proposed
method is based on the formulation of a generalized eigen-
value problem by using Remez multiple exchange algorithm.
Therefore, the �lter coe�cients can be computed by solving
the eigenvalue problem, and the optimal solution is easily
obtained through a few iterations. One example is designed
to demonstrate the e�ectiveness of the proposed method.

1. INTRODUCTION

Two channel perfect reconstruction (PR) �lter banks have
been used in di�erent applications of signal processing [1].
The theory and design of FIR PR �lter banks have been well
established in recent years. In this paper, we will consider
design of two channel IIR PR �lter banks that satisfy the
causal stable condition. A class of two channel causal IIR
PR �lter banks have been proposed in [2] and [3]. In [3],
the proposed �lter banks are based on general IIR �lters,
but the obtained magnitude responses are poor. In [2], an
e�cient structurally perfect reconstruction implementation
is presented, where for IIR case, allpass �lters are used.
There exists, however, a bump of approximately 4dB at
! = �=2.

In this paper, we propose a new design method for two
channel biorthogonal IIR PR �lter banks that satisfy the
causal stable condition. We adopt the structurally perfect
reconstruction implementation proposed in [3], but use gen-
eral IIR �lters rather than allpass �lters of [3]. By using
general IIR �lters, the bump around ! = �=2 caused when
allpass �lters are uesd can be suppressed. To obtain the
optimal solution in the Chebyshev sense, we apply Remez
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multiple exchange algorithm and formulate the design prob-
lem in the form of a generalized eigenvalue problem [4],[5].
Then, the �lter coe�cients can be computed by solving
the eigenvalue problem to get the positive minimum eigen-
value, and the optimal solution is easily obtained through
a few iterations. Finally, one design example is presented
to demonstrate the e�ectiveness of the proposed method.

2. BIORTHOGONAL IIR FILTER BANKS

In two channel �lter banks, assume that H0(z);H1(z) are
analysis �lters, and G0(z); G1(z) are synthesis �lters. It is
well-known that the perfect reconstruction condition is8><

>:
G0(z) = H1(�z)

G1(z) = �H0(�z)

H0(z)H1(�z)�H1(z)H0(�z) = z�2K�1

; (1)

where K is integer. In [3], the analysis �lters H0(z) and
H1(z) are composed by8>>>><
>>>>:

H0(z) =
1

2
fz�2N�1 + A(z2)g

H1(z) = z�2M � B(z2)H0(z)

= z�2M �
B(z2)

2
fz�2N�1 +A(z2)g

; (2)

where N and M are integers. Then the perfect reconstruc-
tion condition of Eq.(1) can be satis�ed. The structurally
perfect reconstruction implementation proposed in [3] is
shown in Fig.1. In [3], for IIR case, A(z) and B(z) em-
ploy the same allpass �lter, however, there exists a bump
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Fig.1 Structurally perfect reconstruction �lter bank.



of approximately 4dB at ! = �=2. In this paper, we use
general IIR �lters rather than allpass �lters, i.e.,8>>>>><

>>>>>:

A(z) =

L1X
i=0

aiz
�i=

L2X
i=0

biz
�i

B(z) =

L3X
i=0

ciz
�i=

L4X
i=0

diz
�i

; (3)

where L1; L2; L3; L4 are integers, the �lter coe�cients ai; bi,
ci; di are real, and b0 = d0 = 1.

3. DESIGN OF IIR PR FILTER BANKS

In this section, we describe design of IIR PR �lter banks
based on eigenvalue problem by using Remez multiple ex-
change algorithm.

3.1. Desired Frequency Responses

From Eq.(2), we have

H0(z) =
z�2N�1

2
f1+

A(z2)

z�2N�1
g =

z�2N�1

2
f1+Â(z2)g; (4)

where Â(z2) = z2N+1A(z2). Then, the desired frequency

response of Â(z2) is(
Â(ej2!) = 1 (0 � ! � !p)

Â(ej2!) = �1 (!s � ! � �)
; (5)

where !p; !s are the passband and stopband edge frequen-

cies respectively, and !p + !s = �. Since Â(ej2(��!)) =

�Â�(ej2!), thus the desired frequency response of A(z) is

Ad(e
j!) = e�j(N+ 1

2
)! (0 � ! � 2!p); (6)

where x� denotes the complex conjugate of x. It can be
seen from Eq.(2) that in [!s; �], H1(e

j!) = e�j2M! since
H0(e

j!) = 0, i.e., the magnitude of H1(z) is 1 and the
phase is linear. In [0; !p], ideally, H0(z) = z�2N�1, then,

H1(z) = z�2M �B(z2)z�2N�1 = z�2Mf1� B̂(z2)g; (7)

where B̂(z2) = z2(M�N)�1B(z2). To force H1(e
j!) to be 0

in [0; !p], the desired frequency response of B̂(z2) is

B̂(ej2!) = 1 (0 � ! � !p); (8)

thus the desired frequency response of B(z) is

Bd(e
j!) = e�j(M�N� 1

2
)! (0 � ! � 2!p): (9)

Therefore, the design problem will become the complex
Chebyshev approximation of A(z) and B(z).

3.2. Design of H0(z)

Here, we consider design of H0(z), i.e., A(z). We de�ne
an error function between the frequency response and the
desired frequency response of A(z) as

Ea(!) =
A(ej!)� Ad(e

j!)

e�j(N+ 1

2
)!

= Â(ej!)� 1: (10)

3.2.1. Formulation

To apply Remez multiple exchange algorithm, we �rst select
J+1 (J = bL1+L2+1

2 c) extremal frequencies !i (2!p = !0 >
!1 > � � � > !J � 0), where !J > 0 when L1 + L2 is even,
and !J = 0 when L1 + L2 is odd. bxc denotes the integer
part of x. Then, we can formulate Ea(!) as follows;

Ea(!i) = Â(ej!i)� 1 = �ej�(!i); (11)

where � (> 0) is magnitude error to be minimized, and �(!i)
is phase response at !i and can be computed in the previous
iteration. Substituting Ea(!) of Eq.(10) into Eq.(11), we
divide Eq.(11) into the real and imaginary parts as

L1X
m=0

am cos(N �m +
1

2
)!i �

L2X
m=0

bm cos(m!i)

= �

L2X
m=0

bm cos(�(!i)�m!i)

(i = 0; 1; � � � ; J);

(12)

L1X
m=0

am sin(N �m+
1

2
)!i +

L2X
m=0

bm sin(m!i)

= �

L2X
m=0

bm sin(�(!i)�m!i)

(i = 0; 1; � � � ; J1);

(13)

where J1 = J when L1 + L2 is even, and J1 = J � 1 when
L1 + L2 is odd, since Eq.(11) has not imaginary part at
!J = 0. Eqs.(12) and (13) can be rewritten in the matrix
form as

PA = �QA ; (14)

where A = [a0; a1; � � � ; aL1 ; b0; b1; � � � ; bL2 ]
T ,

P =

2
6666666666664

cos(N + 1
2 )!0 � � � �1 � � � � cosL2!0

...
. . .

...
. . .

...

cos(N + 1
2 )!J � � � �1 � � � � cosL2!J

sin(N + 1
2 )!0 � � � 0 � � � sinL2!0

...
. . .

...
. . .

...

sin(N + 1
2
)!J1 � � � 0 � � � sinL2!J1

3
7777777777775
(15)

Q =

2
666666666664

0 � � � cos �(!0) � � � cos(�(!0) � L2!0)

...
. . .

...
. . .

...

0 � � � cos �(!J ) � � � cos(�(!J) � L2!J)

0 � � � sin �(!0) � � � sin(�(!0)� L2!0)

...
. . .

...
. . .

...

0 � � � sin �(!J1) � � � sin(�(!J1 )� L2!J1 )

3
777777777775

(16)
It should be noted that Eq.(14) corresponds to a general-
ized eigenvalue problem, i.e., � is an eigenvalue and A is
a corresponding eigenvector. Therefore, to minimize the



magnitude error �, we must compute the positive minimum
eigenvalue by solving the above eigenvalue problem [4],[5].
Then, the corresponding eigenvector gives a set of �lter co-
e�cients. By appropriately selecting the initial extremal
frequencies !i and its phase �(!i), we can apply an iteration
procedure to attain the optimal solution in the Chebyshev
sense. The selection of the initial extremal frequencies !i
and its phase �(!i) will directly inuence convergence of the
iteration procedure. In the following, we will discuss how
to select the initial extremal frequencies !i and its phase
�(!i).

3.2.2. Selection of Initial Value

In the proposed iteration procedure, arbitrarily selecting an
initial extremal frequencies !i and its phase �(!i) cannot
guarantee to converge to the optimal solution. Hence, it is
very important how to select the initial value. We assume
that there exist J1+1 frequency points �!i (2!p > �!0 > �!1 >
� � � > �!J1 � 0) so that the error function Ea(!) satis�es

Ea(�!i) = Â(ej�!i) � 1 = 0; (17)

where �!J1 = 0 when L1+L2 is even, and �!J1 > 0 when L1+
L2 is odd. A possible choice of �!i is to pick these frequency
points equally spaced in [0; 2!p]. Other distributions may
also be prefered to decrease number of iterations. Since
b0 = 1, Eq.(17) can be rewritten into

L1X
m=0

am cos(N �m +
1

2
)�!i �

L2X
m=1

bm cos(m�!i) = 1

(i = 0; 1; � � � ; J1);

(18)

L1X
m=0

am sin(N �m+
1

2
)�!i +

L2X
m=1

bm sin(m�!i) = 0

(i = 0; 1; � � � ; J � 1);

(19)

which is a set of linear equations. Hence, we can obtain
an initial solution of �lter coe�cients by solving the linear
equations of Eqs.(18) and (19). Then, we compute the error
function Ea(!) by using the obtained �lter coe�cients, and
search for the peak points of jEa(!)j in the band [0; 2!p] to
get J+1 initial extremal frequencies !i and its phase �(!i).
The design algorithm is shown as follows.

3.2.3. Design Algorithm

Procedure fDesign Algorithm of IIR PR Filter Banksg

Begin

1. Read L1; L2; N and !p.

2. Select J1 + 1 frequency points �!i equally spaced in
the band [0; 2!p].

3. Solve Eqs.(18) and (19) to obtain an initial solution
of �lter coe�cients ai and bi.

4. Compute error function Ea(!) by using the initial �l-
ter coe�cients, then search peak frequencies as initial
extremal frequencies 
i and compute its phase �(
i).

Repeat

5. Set !i = 
i for i = 0; 1; � � � ; J.

6. Compute P and Q by using Eqs.(15) and (16), then
�nd the positive minimum eigenvalue of Eq.(14) to
obtain a set of �lter coe�cients ai and bi.

7. Compute error function Ea(!), then search peak fre-
quencies 
i and compute its phase �(
i).

Until Satisfy the following condition for a prescribed
small constant � :

fj
i � !ij � � (for i = 0; 1; � � � ; J)g

8. Check stability of A(z) by �nding the locations of
poles.

End .

3.2.4. Stable Condition

In the above design algorithm, the obtained �lter A(z) may
not be guaranteed to be stable. The stability of A(z) must
be checked in step.8 by computing the locations of the poles.
The stability of A(z) are generally dependent on the speci�-
cations, i.e., L1, L2 and N . When L1 and L2 are given, the
group delay must be chosen enough large to guarantee the
obtained �lter to be stable, i.e., N � Nmin, where Nmin

is the minimum group delay for the stable �lters. In our
experience, Nmin is directly proportional to L1 and L2, in
general.

3.3. Design of H1(z)

Here, we consider design of H1(z), i.e., B(z). We can de-
sign B(z) by using the design method of A(z) proposed in
3.2. However, it can be seen from Eq.(2) that the frequency
response of H1(z) maybe not optimal even though the fre-
quency response of B(z) is optimal in the Chebyshev sense.
From Eq.(2), we have

H1(z) = z�2Mf1�
B(z2)H0(z)

z�2M
g = z�2Mf1�B̂(z2)Ĥ0(z)g;

(20)
where

Ĥ0(z) =
H0(z)

z�2N�1
=

1

2
f1 � Â(z2)g: (21)

To force H1(z) to have an equiripple response in the band
[0; !p], we have to optimalize the frequency response of

B̂(z2)Ĥ0(z) in the Chebyshev sense. We de�ne an error
function for B(z) as

Eb(!) = Ĥ0(e
j !
2 )B̂(ej!)� 1: (22)

Then, we can formulate Eb(!) as shown in 3.2, i.e.,

Eb(!i) = Ĥ0(e
j
!i

2 )B̂(ej!i) � 1 = �ej�(!i); (23)

where Ĥ0(e
j !
2 ) can be considered as a weighting function.

Therefore, the design algorithm is the same as that of A(z).
In [3], there exists a bump of approximately 4dB at ! =
�=2, since A(z) and B(z) use the same allpass �lter. In this
paper, we can use general IIR �lters A(z) and B(z), and
appropriately choose the group delay N and M to suppress
the bump around ! = �=2. See design example in detail.



4. DESIGN EXAMPLE

We consider design of an IIR PR �lter bank with N =
7;M = 16; L1 = L3 = 10; L2 = L4 = 2, and !p = 0:4�.
The �lter bank is designed by using the proposed method.
The obtained magnitude responses of A(z) and B(z) are
shown in Fig.2, and the magnitude responses of H0(z) and
H1(z) are shown in Fig.3. It can be seen in Fig.3 that both
H0(z) and H1(z) have equiripple magnitude responses in
the stopband, and H1(z) has not a bump at ! = �=2. To
obtain stable �lters, N and M must be chosen as N � 6
andM � 15, i.e., Nmin = 6 andMmin = 15. Therefore, the
obtained A(z) and B(z) are guaranteed to be stable. The
phase errors of H0(z) and H1(z) are shown in Fig.4, and it
is clear that the phase errors are very small.

5. CONCLUSION

In this paper, we have proposed a new method for designing
two channel biorthogonal IIR �lter banks that satisfy both
the perfect reconstruction and causal stable conditions. We
have adopted the structurally perfect reconstruction imple-
mentation proposed in [3], and used general IIR �lters to
suppress the bump around ! = �=2 caused when allpass
�lters are used in [3]. By using Remez multiple exchange al-
gorithm, we have formulated the design problem of IIR PR
�lter banks in the form of a generalized eigenvalue problem.
Therefore, the �lter coe�cients can be computed by solving
the eigenvalue problem to get the positive minimum eigen-
value, and the optimal solution in the Chebyshev sense is
easily obtained through a few iterations. Finally, we have
designed one example to demonstrate the e�ectiveness of
the proposed method.
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Fig.2 Magnitude responses of A(z) and B(z).
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Fig.3 Magnitude responses of H0(z) and H1(z).
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Fig.4 Phase errors of H0(z) and H1(z).


