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ABSTRACT

In this paper we present a new adaptive notch �lter (ANF)
using the well-known Steiglitz-McBride method (SMM) [1]
for an IIR �lter with the constrained poles and zeros. The
proposed ANF, termed as SMM-ANF, converges to the un-
biased solution, has fast convergence speed, and requires
less computational complexity than existing recursive max-
imum likelihood adaptive notch �lters (RML-ANF) [2]. In
the stationary environments, we analyze SMM-ANF con-
vergence properties using the ordinary di�erential equation
(ODE) [4] technique; we derive conditions for the SMM-
ANF convergence solution unbiased. Simulations further
display that SMM-ANF has better resolution in identify-
ing frequencies of multiple sine waves than RML-ANF. In
the nonstationary environments, we also show that SMM-
ANF and RML-ANF have approximately identical tracking
performance. Simulations are also done to verify the theo-
retically derived results.

1. INTRODUCTION

Adaptive notch �lters (ANF) can be used to estimate fre-
quencies of sinusoidal signals in noise and eliminate sinu-
soidal disturbances with unknown time-varying frequencies.
Early development of ANFs used the structure of FIR �l-
ters. Since IIR �lters are computationally more e�cient
than FIR �lters for characterizing sinusoidal signals, re-
cently several new IIR ANFs have been proposed. One of
the most popular structure was proposed by Nehorai [2, 3],
and Ng [5] which constrains that the poles and zeros of
IIR �lters are not only identical but also symmetric with
respect to the real axis; such structure is of the minimum
number of �lter coe�cients because m coe�cients are re-
quired to model a signal with m frequencies of sine waves.
The proposed ANF in this paper is also developed on this
�lter structure.

Several ANF algorithms using the IIR �lter with min-
imum number of coe�cients were developed: Nehorai [2]
presented an ANF algorithm, called the recursive maximum
likelihood method, which is termed RML-ANF here. Ng [5]
presented two ANF adaptation algorithms called stochas-
tic Gauss-Newton (SGN) and approximate maximum like-
lihood (AML) algorithms. The comparison of SGN, RML,
and AML ANFs was reported in [7]: RML-ANF yields the
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most accurate parameter estimate but its computational
complexity is high; AML-ANF requires the least computa-
tional burden but obtains a biased solution.

In this paper we derive a new ANF algorithm, called
SMM-ANF, by modifying the well-known system identi�-
cation approach, Steiglitz-McBride method (SMM). Since
SMM is well-known for its simple realization, fast conver-
gence speed, and proven convergence to the unbiased so-
lution for o�-line identi�cation and on-line adaptive IIR
�lters [8, 9]. The proposed ANF algorithm inherits such
advantages: the algorithm requires about the same compu-
tational complexity as AML but converges to an unbiased
solution; the convergence speed is comparable to that of
SGN and RML ANFs; the tracking performance is approx-
imately identical to that of RML-ANF. Simulations further
show that SMM-ANF has better resolution in discerning
frequencies of multiple sine waves.

This paper is structured as follows: In Section 2 we de-
rive the formulation and algorithm of SMM-ANF. In Sec-
tion 3, we list the main results of the analytic convergence
and tracking properties of SMM-ANF. The simulation re-
sults are discussed in Section 4. Section 5 concludes the
paper.

2. SMM FOR ADAPTIVE NOTCH FILTERS

Here we derive SMM-ANF by modifying SMM for the struc-
ture of adaptive line enhancement(ALE). SMM is used to
identify the notch �lter; the key is to use delayed measured
signal as the input for SMM. We also show that the resulting
block diagram of SMM-ANF, if used for o�-line frequency
estimation and the noise is assumed white, is equivalent to
the generalized least-squares (GLS) method [14].

2.1. Steiglitz-McBride Method

SMM [1] block diagram for system identi�cation is shown in
Fig. 1, where Dk(q

�1) and Nk(q
�1) are computed to min-

imize the mean square error of es(n) under which the co-
e�cients of all-pole pre�lters 1=Dk�1(q

�1) are �xed. Note
that q�1 is a unit-delay operator. It was shown in [8] that
if the orders of Dk(q

�1) and Nk(q
�1) are su�cient and the

measurement noise e(n) is white, SMM will converge as-
ymptotically to the unbiased solution.

The realization of SMM is simple and the convergence
speed is fast. Several SMM-related algorithms were devel-
oped for o�-line frequency estimation from the disturbed
sinusoidal signals such as iterative quadratic maximum like-
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Figure 1: Block diagram of SMM for system identi�cation.

lihood (IQML) [11], GLS, and iterative �ltering algorithm
(IFA) [10]. SMM is also modi�ed for on-line adaptive IIR
�lters [9] and is used successfully for various applications.
However, as far as we know, on-line SMM for adaptive notch
�lters is new.

2.2. Notch Filter

Consider a measured stationary data y(n) which comprises
a known number of sine waves and a measurement noise
e(n),

y(n) =

mX
i=1

ci cos(win+ �i) + e(n) (1)

where the amplitudes fcig, phases f�ig; and frequencies
fwig are unknown constants. It is known that y(n) can be
represented by an ARMA model [10],

A(q�1)y(n) = A(q�1)e(n) (2)

where A(q�1) is a monic polynomial of order 2m withm co-
e�cients and its roots are on the unit circle with arguments
equal to fwig:

Let � 2 (0; 1). De�ne

�(n) =
A(q�1)

A(�q�1)
y(n): (3)

The parameter � 2 (0; 1) is a contraction factor which en-
ables the notch �lter A(q�1)=A(�q�1) stable. It is known
that �(n) in (3) approximates the noise e(n) to an order
o(
p
1� �), where o(x) is de�ned such that jo(x)=xj is bounded

as x ! 0. If the notch �lter is identi�ed, the signal fre-
quencies can be obtained by solving A(q�1). Therefore, the
frequency estimation of the signal can be formulated as the
notch �lter identi�cation.

2.3. SMM for Notch Filter Estimation
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Figure 2: SMM using ALE for notch �lter identi�cation.

To apply SMM for identifying the notch �lter we adopt ALE
structure and use the delayed y(n) as input; the resulting
block diagram is depicted in Fig. 2. The delay parameter
� discussed in [13] is better chosen to be larger than the
correlation length of noise e(n), but smaller than the corre-
lation length of sine wave signals. In particular, if the noise

is white, � is chosen as 1. If the noise e(n) is colored, then
� can be selected to decorrelate the signals between g(n)
and h(n) of pre�lter outputs in the upper and lower paths
in Fig. 2. Such 
exibility enables the proposed algorithm to
identify frequencies of measured signals in the colored noise
environments.

Since the resulting transfer function at convergence is
desired to be the notch �lter, the following equation should
be satis�ed

lim
k!1

[1� q��
Nk(q

�1)

Dk(�q�1)
] =

A(q�1)

A(�q�1)
(4)

Therefore, the polynomials Dk(�q
�1) and Nk(q

�1) in Fig. 2
can be de�ned as

Dk(q
�1) = Âk(�q

�1); Nk(q
�1) = q�[Âk(�q

�1)� Âk(q
�1)]
(5)

where Âk(q
�1) = 1 + q�2m +

Pm�1

k=1
âk(q

�k + qk�2m) +

âmq
�m:
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Figure 3: Block diagram using SMM in an ALE structure.
It is unrealizable due to the advance operator for � > 1:

Using (5) for Fig. 2 we obtain the block diagram shown
in Fig. 3. Note that in Fig. 3 we extract the factor q��1 to
the output because Nk(q

�1) in (5) is not realizable except
� = 1: If the additive noise is white, then � is set to 1; the
new adaptive notch �lter can be directly derived from Fig. 3.
However, if � > 1, then Fig. 3 is not realizable due to the
advance operator q��1: Since the advance operation does
not a�ect the magnitude of frequency response, here we
neglect the advance operator and obtain the new realizable
SMM-ANF shown in Fig. 4.
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Figure 4: Block diagram of SMM-ANF

2.4. Adaptive Algorithm

The adaptive algorithm can be derived directly from Fig. 4.
Let the estimated coe�cient vector ^�(k) = [âk;1; � � � ; âk;m]T
where the superscript T denotes the transpose operation.
Using the standard recursive least square (RLS) procedure,
we derive the detailed adaptive algorithm of SMM-ANF as
below:



Design Variables: m;�; �1; �r ; �1; �1; �r; �1; �:
Initialization:

^�(0) = ^�(1) = [0; � � � ; 0]T ; P0 = �I
g(�i) = 0 for i = 1; � � � ; 2m

Nominal Values:

m = no. of sinusoidal frequencies = no. of parameters
� = I(identity matrix)
�1 = 0:7; �r = 0:99; �1 = 1
�1 = 0:7; �r = 0:99; �1 = 0:995

Main Loop:

g(n) = [
1

Âk�1(q�1)
]y(n)

h(n) = [
1

Âk�1(q�1)
]y(n��)

 i(n) =

8>><
>>:

��ing(n � i��+ 1) + (�in � 1)h(n� i+ 1)
��2m�in g(n � 2m+ i ��+ 1) + (�2m�in � 1)
h(n � 2m+ i+ 1); i = 1; � � � ;m� 1
��mn g(n �m��+ 1) + (�mn � 1)
h(n �m+ 1); i = m

 (n) = [ 1(n);  2(n); � � � ;  m(n)]T
es(n) = g(n ��+ 1) + �2mn g(n� 2m��+ 1)

�(�2mn � 1)h(n � 2m + 1)� T (n) � ^�n�1
Pn =

1

�n

�
Pn�1 � Pn�1 (n) 

T (n)Pn�1

�n +  
T (n)Pn�1 (n)

�

^�n = ^�n�1 + Pn (n)es(n)
�n+1 = �r�n + (1� �r)�1
�n+1 = �r�n + (1� �r)�1

Some comments on the algorithm are listed as follows:

� The presented algorithm is in the form of RLS and is
similar to that of RML, SGN and AML ANFs. The
di�erences between these algorithms are on the choice
of the regression vector  (n) and error es(n). It is
well known that di�erent convergence and tracking
performances arise from the choice of the regression
vector and error.

� The parameter � is often set to a small initial value
and is gradually increased to a value close to 1. Such
strategy has been used in previous ANF algorithms
such as RML, SGN and AML. The purpose for �
with a small initial value is to widen the notch of
the pre�lter frequency response to prevent from the
slow convergence due to poor estimate of initial �lter
coe�cients; conversely, the reason for �1 set close
to 1 is to narrow the notch for reducing the bias of
the frequency estimate after convergence. We also
show that for SMM-ANF such setting of the para-
meter � not only increases the convergence speed but
also helps ensure the convergence of the algorithm.
Note that �1 is always less than 1 in order to stabi-
lize the pre�lters.

2.5. Relation between SMM-ANF and RGLS

The adaptive algorithm can be further simpli�ed if the pre-
�lter coe�cients are assumed to vary slowly because the
pre�lter output h(n) can be approximated by the delayed

g(n): Theoretically, if the pre�lters are time-invariant, then
the pre�lter and the delay commute; therefore, h(n) =
g(n��).
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Figure 5: Equivalent block diagram of SMM-ANF for o�-
line frequency estimation.

The simpli�ed block diagram of SMM-ANF is shown
in Fig. 5; the adaptive algorithm for Fig. 5 is obviously
much simpli�ed. If � = 1 and if the block diagram of
Fig. 5 is used for o�-line frequency estimation, then the
algorithm is equivalent to GLS [14] and is equivalent to IFA
[10] as � = 1: Therefore, if the delay parameter � is 1, then
the simpli�ed SMM-ANF derived for Fig. 5 is equivalent to
recursive generalized least square (RGLS) [15] method.

Extensive simulations show that the simpli�ed algorithm
for Fig. 5 obtains convergence and tracking performances as
close as SMM-ANF for Fig. 4 if the additive noise is white.
However, if the noise is colored, the simpli�ed algorithm is
no longer useful and often results in incorrect convergence
solution because the decorrelation e�ect due to � no longer
exists.

3. CONVERGENCE AND TRACKING ANALYSES

The convergence and tracking analyses of the ANF are dis-
cussed in brief here. We apply the well-known ODE method
to analyze SMM-ANF convergence properties in the sta-
tionary environments. We also analyze the ANF track-
ing performance following the analysis procedure of [12] for
RML-ANF using the technique in [6].

Due to the limited space, here we only list the main
result and skip the detailed derivation. We derive from the
analysis a su�cient condition constraining the noise sta-
tistics under which SMM-ANF asymptotical convergence
solution is unbiased. Such condition is used to show that
SMM-ANF convergence solution is unbiased as the noise is
white and the stabilizing parameter � is in�nitely close to
1. We also derive a necessary condition for SMM-ANF so-
lution to be unbiased when the noise is colored. Since the
condition is di�cult to meet, the ANF convergence solu-
tion is generally biased. The ODE approach is also used to
show that the setting of parameter � in the algorithm not
only increases the convergence speed but also helps ensure
the convergence of SMM-ANF. From the tracking analysis
we show that SMM-ANF performs as well as RML-ANF in
the nonstationary environment. The excellent convergence
and tracking properties enable the ANF suitable for ANF
applications.

4. SIMULATION RESULTS

Here we present three simulations to illustrate SMM-ANF
performance in the stationary and nonstationary environ-
ments. The �rst simulation demonstrates that SMM-ANF
performs as well as RML-ANF in identifying the frequencies
of sine wave signals in white noise environments. The sec-
ond simulation illustrates that SMM-ANF has better res-



olution in frequency estimation than RML-ANF. The �-
nal simulation veri�es that SMM-ANF has nearly the same
tracking performance as RML-ANF.

4.1. Simulation 1

The signal in the numerical example consists of four sine
waves, i.e., y(n) =

P4

k=1
ck sin 2�fkn + e(n); where e(n)

is a zero-mean unit-variance white Gaussian noise. The
signal frequencies are normalized and set to f1 = 0:1; f2 =
0:2; f3 = 0:3; and f4 = 0:4Hz:

We have done 100 independent experiments for signals
of various lengths with various signal-to-noise ratios (SNRs).
The results are presented in Table 1 where the variance of
the estimated frequencies are listed. Note that the data in
the parenthesis for SNR = 0 dB indicate the number of out-
lier occurring in 100 independent trials; here the trial will be
classi�ed as outlier occurring if the frequency estimate devi-
ates from the truth frequency by 0.01. Comparing Table 1
with Table III in [2], we observe that SMM-ANF performs
as well as RML-ANF for stationary signals in white noise
environments.

Table 1: SMM-ANF simulation results of 100 independent
experiments for in additive white noise environments.

N SNR f̂1 Var. f̂2 Var. f̂3 Var. f̂4 Var.
�10�4 �10�4 �10�4 �10�4

0 42.89(2) 38.63(5) 42.80(2) 42.36(2)
100 8 19.11 17.86 18.77 19.25

16 7.12 7.52 6.97 6.98
�10�5 �10�5 �10�5 �10�5

0 21.98 21.98 20.72 23.91
500 8 9.30 9.33 8.98 9.34

16 3.49 3.71 3.65 3.53
�10�6 �10�6 �10�6 �10�6

0 10.32 11.46 12.44 10.49
2000 8 4.12 4.17 4.71 4.68

16 1.62 1.96 1.91 1.66

4.2. Simulation 2

The measured signal in simulation is of the form y(n) =
c1 sin 2�f1n+ c2 sin 2�f2n+ e(n) where e(n) is a zero-mean
unit-variance white noise. For a signal with f1 = 0:1; f2 =
0:11; and SNR = 10 dB for each sine wave signal, the
frequency estimates of SMM-ANF and RML-ANF are de-
picted in Fig. 6 which illustrate that while RML-ANF may
fail to obtain correct frequency estimate (f̂1 = 0:1; f̂2 = 0:2)
even the corresponding SNRs are large, SMM-ANF accu-
rately converges to the correct estimate.
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Figure 6: SMM-ANF and RML-ANF simulation results for
a signal comprising 2 sine waves and a white noise.

We have tried 100 independent experiments using SMM-
ANF and RML-ANF for the above setting. While RML-
ANF fails to obtain correct frequency estimate in 63 ex-
periments; SMM-ANF obtains correct frequency estimate

for each trial. Qualitatively, it seems that the all-pole pre-
�lters of SMM-ANF enforce the function to discern the sine
waves of close frequencies, rendering SMM-ANF excellent
in resolving the frequencies of multiple sine waves in the
noise-contaminated signals.

4.3. Simulation 3

The measured signal is y(n) = c1 cos nw(n) + e(n) and
w(n) = w(n�1)+
v(n);where v(n) is a white noise of unit
variance. The signal for simulation is of c = 1; w(0) = 0:3
and of length 10,000. The same simulation in [12] is done for
three cases with the following settings: (1) 
 = 0; �2e = 0:5;
(2) 
 = 0:001; �2e = 0; (3) 
 = 0:001; �2e = 0:5: In Ta-
ble 2 simulation results for SMM-ANF and RML-ANF are
presented. It shows that the simulation and theoretical re-
sults agree well, and SMM-ANF has nearly identical track-
ing performance to RML-ANF.

Table 2: Tracking performance of SMM-ANF and RML-
ANF for three cases of di�erent settings.

SMM-ANF RML-ANF �̂w1

case 1 1:0567 � 10�5 1:0173 � 10�5 2:5 � 10�5
case 2 3:2647 � 10�5 3:2488 � 10�5 2:5 � 10�5
case 3 4:4995 � 10�5 4:4070 � 10�5 5:0 � 10�5

5. CONCLUSIONS

A new ANF, called SMM-ANF is proposed in this paper.
We study the convergence and tracking performances of the
proposed ANF in the stationary and nonstationary environ-
ments by analysis using existed techniques and simulations.
It is analytically shown that SMM-ANF has approximately
the same tracking performance as RML-ANF, and the con-
vergence solution of SMM-ANF is unbiased if the measure-
ment noise is white as �! 1: SMM-ANF displays excellent
capability in resolving frequencies of signals with multiple
sine waves. We believe that such excellent convergence and
tracking properties will make the presented ANF useful for
various applications.
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