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ABSTRACT

Cohen’s class of time-frequency distributions for continuous sig-
nals has recently been to extended to discrete signals using both
an axiomatic approach and an operator theory approach. In this
paper, we investigate the formulation of several classical time-
frequency distributions (Wigner, Rihaczek, Margenau-Hill, Page,
Levin, Born-Jordan, spectrogram) in the discrete Cohen’s classes.
The main result of this paper concludes that there does not exist
a formulation of the Wigner distribution in all of the discrete Co-
hen’s classes.

1. INTRODUCTION

There are four types of signals often used in signal processing,
and to analyze these signals, there are four types of Fourier trans-
forms. In Table 1 we list the four types of signals along with their
properties and the appropriate Fourier transform. Since the Fourier
transform is linear, under certain sampling conditions, the discrete
Fourier transforms are samples of the continuous Fourier trans-
form.

Cohen’s class of time-frequency distributions [1, 2, 3] was
originally formulated for type I signals. Recently, this class has
been extended to the three types of discrete signals in Table 1 us-
ing both an axiomatic approach [4, 5, 6] and an operator theory
approach [7, 8]. In addition, Richman et. al. [9] have used a group
theory approach to derive type IV Wigner distributions.

However, since Cohen’s class of time-frequency distributions
are quadratic rather than linear, the discrete Cohen’s classes are
not generally sampled versions of the continuous Cohen’s class.
In this paper we will present results concerning discrete versions
of several classical time-frequency distributions [1, 2, 3]: Wigner,
Rihaczek, Margenau-Hill, Page, Levin, Born-Jordan, and the spec-
trogram. To simplify notation, we will usex() to denote signals of
all types and let the context indicate the type.

2. TYPE I COHEN’S CLASS

We will present Cohen’s class in two different formulations:
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The first provides simpler notation in the discrete case, but the sec-
ond is more commonly used. The two forms of the kernel function,
 () and�(), are equivalent up to a 45 degree rotation.

We will use four properties, that are well defined for all four
signal types, to provide an alternative definition of the classical
Wigner distribution. One of these properties, called the time-reversal
property, is not commonly used.

Definition. Let y(t) = x�(�t) (and thusY (!) = X�(!)). A
time-frequency distribution,T , is said to satisfy the time-reversal
property ifTy(t; !) = Tx(�t; !).

Our alternative definition is based on the following theorem.

Theorem. The type I Wigner distribution is the only time-frequency
distribution for type I signals that: (i) is a quadratic function of the
signal, (ii) is covariant to time shifts and frequency shifts, (iii) sat-
isfies Moyal’s formula, and (iv) satisfies the time-reversal property.

Proof. Properties (i) and (ii) immediately limit us to TFDs in Co-
hen’s class [3]. We will use both forms of Cohen’s class in the
proof, since the first is easier in the sequel and the first is more
intuitive to most people. Property (iii) constrains the kernel to be
of the form
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for some functionf(). Property (iv) constrains the kernel to be of
the form

 (t1; t2) =  (t2;�t1)
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Properties (iii) and (iv) are satisfied simultaneously if and only if
f(a) = 0 for all a. This constrains the kernel to be
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which corresponds to the type I Wigner distribution.



3. TYPE II COHEN’S CLASS

We will also present the type II Cohen’s class in two different for-
mulations:
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There is no general method for discretizing a distribution from the
original Cohen’s class to the discrete Cohen’s class. However, we
will use the obvious discretization when it seems appropriate. For
example, the spectrogram and its obvious discretization:
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are members of the type I and II Cohen’s classes, respectively.
The kernels of the Rihaczek, Margenau-Hill, Page, Levin, and

Born-Jordan distributions all have a straightforward discretization
to the type II Cohen’s class:
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These kernels lead to a meaningful distribution in a broader sense.
For example, compare the continuous Rihaczek distribution to the
type II version defined using the above kernel:

R
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Note that the type II Rihaczek, Page and Levin distributions sat-
isfy a type II version of Moyal’s formula, and that the type II spec-
trogram, Born-Jordan, and Margenau-Hill distributions satisfy the
time-reversal property.

If one applies the straightforward discretization of the type I
Wigner kernel, then one obtains:
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which results in the discrete Wigner distribution originally posed
in [10]. If one compares the above definition to kernel sampling
in Figure 1, then it is straightforward to see that the kernel has
non-zero values only for odd values of m (lags). This is clearly
undesirable, and does not present a useful definition of a type II
Wigner distribution1.

1If one oversamples the signal by a factor of two, then it is possible to
obtain samples of the type I Wigner distribution, but this representation is
not a member of the type II Cohen’s class.

Since the discretization method does not provide a satisfactory
result, we will use the above theorem in an attempt to define a type
II Wigner distribution. Properties (i) and (ii) restrict us to TFDs in
the type II Cohen’s class. A TFD in the type II Cohen’s class will
satisfy Moyal’s formula if and only if
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and will satisfy the time reversal property if and only if
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However, it is impossible to satisfy both of these kernel constraints
simultaneously. To see this, refer to Figure 1a and note that for odd
m there is no sample atn = 0.

There exist many distributions in the type II Cohen’s class
that satisfy Moyal’s formula (e.g. Rihaczek, Page, Levin), and
there exist many distributions in the type II Cohen’s Class that sat-
isfy the time-reversal property (e.g. Margenau-Hill, Born-Jordan,
spectrogram), but there do not existANYthat satisfy both proper-
ties. Since type III signals are the dual of type II signals, the type
III Wigner distribution also does not exist under this definition.

4. TYPE IV COHEN’S CLASS

For ease of notation, we will present the type IV Cohen’s class in
only one form:
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whereN is the period of the signal and the kernel. In Figure 1 we
show the kernel sampling structure for odd and even values ofN .

Of the classical time-frequency distributions mentioned above,
only the spectrogram, Rihaczek, and Margenau-Hill distributions
have obvious discretizations to the Type IV Cohen’s class. For ex-
ample, the type IV Rihaczek kernel and distribution are formulated
as:
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Because of the periodicity of the kernel it is not obvious how to
implement the Born-Jordan, Page, and Levin distributions, but we
will not investigate this issue further in this paper.

As for the type II Cohen’s class, there is no clear method for
discretizing the Wigner distribution to the type IV Cohen’s class.
Richman et al. have recently defined Wigner distributions for type
IV signals using group theory [9]. Surprisingly, the mathematical
structure of the problem forced them to use two different groups
for defining their type IV Wigner distributions for even and odd
length signals. In addition, the properties of the distributions for
even and odd length signals are quite different. For example, in
Figure 2 we show the distributions defined by Richman for two
chirp signals of lengthN = 127 andN = 128. Because of these
differences we will attempt to define type IV Wigner distributions
for even and odd length signals using the above theorem.

For type IV signals with an odd length, there exists exactly
one type IV TFD that satisfies the four properties in the theorem.



This type IV TFD is equivalent to the definition given by Richman
et al., and we will denote it as the type IV Wigner distribution (for
odd length signals). The kernel of this type IV Wigner distribution
is:2
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Figure 1b shows the kernel corresponding to the Wigner distribu-
tion for a signal that has a period of 3 samples. In Figure 1b the
open circles correspond to a kernel value of 1, and the filled cir-
cles correspond to a kernel value of 0. To see that this is the only
kernel that satisfies the four properties, follow the steps outlined in
the proof of the theorem and note that the kernel is now a periodic
function.

For type IV signals with an even length, there do not exist any
Type IV TFDs that satisfy the four properties in the above theo-
rem. There exist many distributions in the type IV Cohen’s class
for even length signals that satisfy Moyal’s formula (Rihaczek) and
many that satisfy the time-reversal property (spectrogram, Margenau-
Hill) but none that satisfy both. To see this, follow the steps in the
proof of the theorem and examine the kernel for oddm. Surpris-
ingly, the length of the period determines whether or not all four
properties can be satisfied. The definition proposed by Richman
et al. for even length signals [9] does satisfy Moyal’s formula, but
does not satisfy the time-reversal property.

5. COMMENTS ON ALIASING

The properties of cross terms in the discrete Cohen’s classes are
different from the properties of cross terms in the continuous Co-
hen’s class [4]. Several authors have attributed the cause of this to
aliasing [11, 12]. Aliasing implies a loss of information, but since
there exist many distributions in the type II and IV Cohen’s classes
that satisfy Moyal’s formula, we know that there is no information
lost in these distributions [13]. Also, if the differences between
the continuous and discrete Cohen’s classes were due to aliasing,
then these differences should disappear as the signal sampling rate
increases. However, this is not the case.

6. CONCLUSIONS

In this paper we present the formulation of several classical time-
frequency distributions in the discrete Cohen’s classes. Since there
is no clear method for discretizing the Wigner distribution, we pro-
pose an alternative definition for the Wigner distribution that gen-
eralizes easily to discrete signals. Under this definition, we show
that the Wigner distribution only exists for type I signals and for
type IV signals with an odd length period. The former case corre-
sponds to the classical definition, and the latter case corresponds
to the definition given by Richman et al. While other definitions of
the Wigner distribution are certainly possible, this result suggests
why previous methods have failed to produce a satisfactory result
for type II signals and for type IV signals with an even length pe-
riod.
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Table 1: Four types of signals and their properties in the time domain.
Type Time Domain Frequency Domain Transform

I continuous, aperiodic continuous, aperiodic Fourier transform
II discrete, aperiodic continuous, periodic discrete-time Fourier transform
III continuous, periodic discrete, aperiodic Fourier series
IV discrete, periodic discrete, periodic discrete Fourier transform
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Figure 1: Kernel sampling grids for type II and type IV signals. The solid lines denote the two axis systems and the dashed lines denote
one period.
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(a) type IV Wigner distribution - odd length linear chirp

time

fr
eq

ue
nc

y

20 40 60 80 100 120
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) Richman distribution - even length linear chirp

Figure 2: Comparison of the two distributions defined by Richman for a chirp signal.


