
ABSTRACT

In this paper a procedure which filters out roughly half of the
array manifold errors for approximately centro-symmetric arrays
is described. The procedure - subspace domain forwards
-backwards (f/b) averaging - improves the performance of
subspace based direction finding (DF) algorithms such as
MUSIC and ESPRIT. Experimental data from the Mountaintop
system are used to confirm the theoretical results.

1. INTRODUCTION

For centro-symmetric sensor arrays (arrays with 180o rotational
symmetry) there exists an invariance that allows each data vector
to be used twice for covariance estimation in a process known as
f/b averaging. Applications of f/b averaging include an improved
linear prediction estimator [1], improving covariance estimation
for adaptive beamforming and space-time adaptive processing
[2-3], and in conjunction with spatial smoothing, a scheme to
decorrelate coherent signals incident on an array for direction
finding (DF) [4]. However, in practice the array may not be
exactly centro-symmetric - there is some level of array manifold
errors present. Previously, it was demonstrated that unknown
array manifold errors have a minimal effect on the performance
of adaptive beamformers utilizing f/b averaging [2]. 

Here the effect of f/b averaging in the presence of array manifold
errors on superresolution DF algorithms such as MUSIC [5,6] is
investigated. Conventional data domain f/b averaging in the
presence of array manifold errors is analyzed and subspace
domain f/b averaging is proposed as a way of reducing the
effects of array manifold errors. Simulated results and
experimental data which confirm the phenomena described are
presented.

2. DATA MODEL

It is assumed the reader is familiar with the array signal
processing signal model. This section is intended to introduce the
notation used later. Consider a uniform linear array of N sensors
with inter-element spacing d, though the results given here may
be extended to any centro-symmetric array. The transfer function

between direction of arrival (DOA) θ and the array’s output is
represented by the Vandermonde steering vector

 ,a(�) = [ej( 1−N
2 )2�d�−1 sin(�), ...,ej( N−1

2 )2�d�−1 sin(�)]T

(1)
where λ represents wavelength. Note that the phase reference for
a(θ) is chosen to be at the physical center of the array and that 

a(θ) = Ja(θ)*   ,
(2) 

where J - the exchange matrix - has ones on the anti-diagonal
and zeros elsewhere. The data received at the array output is the
sum of the K incident signals and the noise

αk(t)a(θk)+n(t)    ,x(t) = �
k=1

K

(3)
where αk(t) is the complex amplitude of the kth signal and n(t)
the noise vector at snapshot (i.e. time sample) t. We assume both
the noise and αk(t) to be a zero-mean, complex, Gaussian random
processes, and the noise to be spatially white. Also, let µk be the
signal to noise ratio (SNR) per array element of the kth signal. 

The steering vector a(θ) represents the desired array response for
which the array was designed - a presumed array manifold -
which due to modeling errors differs from the true manifold.
The true manifold, ah(θ), may be related to a(θ) by taking the
Hadamard product of the latter with a vector of error
coefficients, h=[h1,...,hN]T which preserves the output power of
the steering vector, i.e.

 and   ah(θ)Hah(θ) = a(θ)Ha(θ)   .ah(�) = a(�)" h
(4)

Except for the special case where h = Jh*,  ah(θ)  Jah(θ)*. This�

inequality (i.e. the true array is not exactly centro-symmetric) is
assumed for the remainder of the paper. By inserting ah(θ) into
Equation (3), data vectors for the actual array are obtained. The
elements of h have the form

hi = c + gi   ,
(5)

where c is a real constant and gi is an error term with a
zero-mean complex Gaussian distribution. Let the ratio of the
variance of gi to c be ξ2. This model is used so that some
expectations can be computed and used to give a ‘feel’ for how  
performance varies as a function of ξ. Generally the size of the
array manifold errors - the difference between the true and
presumed array manifolds - is small, i.e. ξ2<<1. We also assume
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that the array manifold errors are a random function of the DOA.
The correlation of the array manifold errors over some arbitrarily
small change in DOA is ignored here, but is open for future
investigation.

The exact covariance matrix is defined as R=E{ x(t)x(t)H}, where
E{.} represents the expectation operator. The sample covariance
matrix is traditionally estimated from L snapshots (samples) of
the data, i.e.

   .R̂ = 1
L �

i=1

L

x(ti )x(ti )H

(6)
For centro-symmetric arrays an improved estimate of the
covariance matrix is obtained through f/b averaging, i.e.

R̂f = 1
2L �

i=1

L

x(ti )x(ti )H + xr(ti )x r(t i )H = 1
2 R̂ + JR̂	J

(7)
where xr(t)=Jx(t)*. It is easily shown that the signals and the
noise in the forwards (x(t)) and backwards (xr(t)) samples are
uncorrelated. The expected value of the forwards and backwards
noise components from Equation (3) is E{ Jn(t)*n(t)H} =
E{ Jn(t)n(t)T} *= 0 for any zero mean random process. Thus
sample support is effectively doubled by the use of f/b
averaging. Similarly if the modulating signal in Equation (3) is
considered, the correlation between the forwards and backwards
samples of the kth signal is E{ αk(αk

*)*} = E{ αkαk} = 0 since αk is
also assumed to be zero mean.

3. EFFECT OF ARRAY MANIFOLD ERRORS

Suppose that due to the array manifold errors the array is not
perfectly centro-symmetric, then the (apparently uncorrelated)
forwards and backwards samples of a signal appear to have
different steering vectors. Thus, a covariance matrix produced
using f/b averaging will have two signal subspace eigenvectors /
eigenvalues for each signal present. The properties of this
enlarged signal subspace will be explored theoretically for the
case of a single signal and a known covariance matrix.

Consider the signal covariance matrix of two uncorrelated
signals with steering vectors a1 and a2 and SNRs µ1 and µ2. The
signal subspace eigenvectors (e1,e2) and eigenvalues (λ1,λ2) are
given by [2,7];

ei  βa1 + γa2 ;    i = 1,2   ,�

(8a)

λi = N(µ1 + µ2)    and1
2 1� 1 −

4�1�2(1 − |)|2)
(�1 + �2)2

(8b)

   .
�

�
=
� i − �1N
�1N)

(8c)
where ψ is the cosine of the angle between a1 and a2. When the
two signals are the forwards and backwards spatial samples, with
steering vectors ah and ah

r, each with SNR equal to µ, Equation
(8b) simplifies to

λi = Nµ(1  |ψ|)   .�

(9)

The  in Equation (9) corresponding to the first and second�

eigenvalues. For small levels of the array manifold errors, (i.e. ξ2

1), then |ψ| is close to 1, λ1 O 2Nµ, and from Equation (8c)A

   .
�

�
M

1
) O 1

(10)
Thus the first eigenvector of the covariance matrix is
proportional to ah + ah

r, i.e. it depends on the average of the
forwards and backwards steering vectors for a signal. Since the
array manifold errors have been modeled as random from
element to element, this averaging reduces the effect of the array
manifold errors by 3 dB. For a single signal incident on a 10
element array, Figure 1 shows the ‘distance’ (1 minus the square
of the cosine of the angle) between the presumed array manifold
and the first eigenvector of the conventional and f/b averaged
covariance matrices as a function of ξ2. The result is averaged
over 100 Monte Carlo runs - each with a different realization of
the random array manifold errors. For small values of ξ2 the
primary eigenvector for the f/b averaged covariance matrix lies
about 3 dB closer to the presumed array manifold as expected.
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Figure 1: Plot of the ‘distance’ between the primary eigenvector
and the presumed array manifold as a function of the size of the

array manifold errors. 

Now we consider the second eigenvalue/eigenvector pair of the
f/b averaged covariance matrix. For the model of section 2 and
small ξ2,  E{|ψ|} is approximated as

   .E |)| = E
 

 
 

|a(�)h
Ha(�)h

	r |

|a(�)h
Ha(�)h|

 

 
 M 1

1 + �2 O 1 − �2

(11)
This is also borne out by inspection of Figure 1. Thus the second
eigenvalue of the covariance matrix is approximated as 

λ2 O Nµξ2   .
(12)

Substituting Equation (12) in to Equation (8c), for small ξ2 the
weighting of the steering vectors for the second eigenvector is

   .
�

�
M
�2 − 1
) O −1

(13)

ξ2 (dB)



Thus the second steering vector of the covariance matrix depends
on the difference (due to the array manifold errors) of the
forwards and backwards spatial samples. Due to the random
model of the array manifold errors used, it is clear the difference
is also random in nature.

So, after f/b averaging with array manifold errors the signal
subspace contains two sets of eigenvector / eigenvalue pairs,
‘purified’ pairs corresponding to the signals of interest (purified
subspace), and random pairs due to the array manifold errors
(error subspace). Ideally, only the purified subspace should be
used for estimating the signal’s DOA, since typical estimators
are slightly degraded by the perturbation caused by including
random ‘noise like’ eigenvectors in the signal subspace.
However, methods such as AIC and MDL [8], (typically used to
estimate the dimension of the signal subspace), cannot
distinguish between the purified and error subspaces. 

There are three scenarios which may result from f/b averaging
with array manifold errors:

Scenario 1: Error eigenvalues are below the noise level. From
Equation (12), if ξ−2<µN, then the error eigenvalues will be
below the noise floor. In this case the DOA estimator ought to
give improved performance, since only the purified subspace is
used.

Scenario 2: Error eigenvalues are above the noise level, but
smaller than all the purified eigenvalues. If only the purified
subspace is used in the DOA estimator (possible if say the
number of signals is known a priori, or if AIC/MDL was used
prior to f/b averaging) improved performance results.  If both the
purified and error subspaces are used in the DOA estimator, then
performance is slightly degraded, since the signal subspace has
now been perturbed by some random eigenvectors.

Scenario 3: Some error eigenvalues are larger than some of the
purified eigenvalues. Since the purified and error subspaces are
not easily separated, reduced performance results, either due to
the DOA estimator incorrectly using the both the purified and
error subspaces, or (if the number of signals is known) because
not all of the purified subspace is  used.

Figure 2 shows the results of a simulation corresponding to
scenario 3. There are 2 signals incident on a 10 element array
from sin(θ)= 0.05, with SNRs of 30 dB and 10 dB. The array�

manifold errors are set at ξ−2=−15 dB, thus the error eigenvalue
for the 30 dB SNR signal is at ~25 dB while the purified
eigenvalue for the 10 dB signal is only at ~17.7 dB. 5 snapshots
of data were available for covariance estimation in each case.
Since the purified and error subspaces cannot be separated in any
straightforward fashion, both, (i.e. 4 eigenvectors) are required in
order for both signals to be resolved as is evident in Figure 2.
Even so, performance is still worse with f/b averaging than
without. The estimate variances for the 2 signals are 0.001 and
0.193 beamwidths with f/b averaging (4 signal subsapce
eigenvettors)verses 0.0007 and 0.0430 beamwidths without.
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Figure 2: DF results for closely spaced signals with different
SNRs. After f/b averaging, if only the first 2 signal subspace
eigenvectors are used, then only one signal is resolved. In all

cases there are some outling signal estimates 

4. SUBSPACE DOMAIN F/B AVERAGING

If for scenario 3 above the effect of the signal power on the
eigenvalues can be negated, then separating the purified and
error subspaces would be easier. This may be accomplished by
performing f/b averaging on the signal subspace, rather than on
the data. The procedure we propose is as follows:

1) Estimate the covariance matrix, , from the dataR̂
2) Find the signal subspace (Es) of , (by eigen decompositionR̂

and use of AIC/MDL). Let the rank of Es be r.
3) Form the projection matrix of the signal subspace P=Es Es

H.
4) Apply f/b averaging P, i.e. Pf  =1/2(P+ JP*J).
5) Eigen decompose Pf and take the r largest eigenvectors,

(those corresponding to the r largest eigenvalues). This is
the purified signal subspace Ep. Use Ep in the direction
finding algorithm.

It is easily proven that f/b averaging can be applied to P in the
same way as it can be applied to . Consider the eigenR̂
decomposition of the signal only covariance matrix

, where A is the matrix of steering vectorsRs = ASAH = E��EH

for the r signals present, S is the diagonal matrix of the signal
powers of the (uncorrelated) signals, E is the matrix of the r
eigenvectors of Rs and Λ the diagonal matrix of eigenvalues.
Since  P = EEH, the projection of the signal subspace is the same
as the signal only covariance matrix with all of its signal
subspace eigenvalues equal to unity. Since for any combination
of signal DOAs, their signal powers may be adjusted so that the
eigenvalues of Rs are unity, and f/b averaging applied, it follows
the f/b averaging may also be applied to P.

When f/b averaging is applied to P in the presence of array
manifold errors, the rank of Pf is 2r, containing both purified and
error subspaces, each of rank r. Providing the array manifold
errors are small, the eigenvalues of the purified subspace of Pf

are about 1−ξ2, while the eigenvalues of the error subspace have

SIN (Angle)



a mean value of about ξ2. By performing f/b averaging on a
matrix with identical eigenvalues, separation of the purified and
error subspaces becomes straightforward.

To demonstrate the effectiveness of subspace domain f/b
averaging, it was also applied to the data that produced Figure 2,
the results being plotted in Figure 3. The signal estimate
variances are  0.0007 and 0.0014 beamwidths respectively.
Root-MUSIC with subspace domain f/b averaging performs
better than any of the other implementations tried.
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Figure 3: Direction finding results for root-MUSIC with
subspace domain f/b averaging for the same data as Figure 2.
There are no outling estimates for either of the two signals for

the subspace domain f/b averaging.

The implementation changes when the number of signals is
larger than half the number of sensors in the array ( r > N/2). In
this case only the N−r smallest eigenvectors of Pf are discarded,
since there are not enough degrees of freedom to fully represent
both the purified and error subspaces. In this case the signal
subspace lies slightly less than the 3 dB closer to the presumed
array when r < N/2.  

There is not enough room to fully address the effect of coherent
signals on subspace domain f/b averaging here. However, if it is
known that there are v coherent pairs of signals present, then the
largest r+v eigenvectors of Pf are used as the purified subspace.

Figure 4 shows plots of the MUSIC spectrum for a piece of data
collected with the Mountaintop experimental radar [9].  There is
a single signal source at 30o from array broadside with an SNR
of about 30 dB. The array is assumed to be uniform linear. The
first eigenvalue of the conventional and f/b covariance matrices
is at about 42 dB above the noise floor. For the f/b covariance
matrix the second (error) eigenvalue is about 24 dB above the
noise floor. This corresponds to ξ2 = −15 dB. The peak using the
subspace domain f/b averaging is about 2.5 dB higher, indicating
that the subspace lies closer to the presumed array manifold. 

5. CONCLUSIONS

Forwards-backwards averaging in the presence of array manifold
errors can double the size of the signal subspace resulting in both

purified and error signal subspaces. When the purified subspace
can be extracted by itself, the DOA estimates are less prone to
the effects of array manifold errors. Unfortunately this is not
always easily accomplished when f/b averaging is implemented
in the data domain. However, the subspace domain forwards-
backwards averaging proposed here allows reliable partitioning
of the purified and error subspaces, thus reducing algorithm
sensitivity to array manifold errors.
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Figure 4: Plots of the MUSIC spectrum with a single signal
incident from about 30o on the Mountaintop radar. F/b averaging

increases the maximum in the response by about 2.5 dB. 
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