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ABSTRACT

A beamspace root modification of PseudoRandom Joint Estima-
tion Strategy (PR-JES) [1] is developed. The essence of PR-JES is
to generate the eigenstructure-based estimator bank for given sam-
ple covariance or data matrix. Combining the results of “parallel”
underlying estimators, PR-JES removes the outliers and improves
the threshold performance. In the case of non-uniform array, the
interpolated array approach is used to enable the application of root
underlying estimators. Simulations and results of real ultrasonic
data processing show that the proposed beamspaceroot implemen-
tation significantly outperforms spectral elementspace PR-JES and
achieves the performance similar or better than that of stochastic
ML method.

1. PRELIMINARIES

Spectral eigenstructure estimators have excellent performance at
high SNR. However, these properties are achieved at a significant
computational cost. The performances of eigenstructure estima-
tors may degrade as the SNR goes down below a certain threshold.
In recent decade, computationally efficient search-free eigenstruc-
ture methods have been elaborated, e.g. root MUSIC [2]. Root
MUSIC is known to have significant computational advantages as
well as better threshold performance relative to spectral MUSIC
[3]. Unfortunately, root MUSIC cannot be applied to non-uniform
arrays. To overcome this problem, a promisinginterpolatedroot
MUSIC approach has been proposed [4].

Another approach improving the performance of direction find-
ing techniques is the beamspace transformation [5]. It offers lower
computational cost and better threshold and asymptotic perfor-
mances than elementspace approach. Recently, there has been a
promising trend to combine root and beamspace approaches into
one scheme [6].

Let an array ofn sensors receivesq narrowband plane waves.
Then � 1 vector of sensor outputs is given by [1]-[4]

x(i) = As(i) +n(i) ; (1)

whereA = [a(�1); : : : ;a(�q)] is the n � q direction matrix,
�1; �2; : : : ; �q are the signal DOA’s,a(�) is then � 1 direction
vector, s(i) is the q � 1 vector of random source waveforms,
andn(i) is then � 1 vector of sensor noise. The source wave-
forms and noise are assumed to be stationary zero-mean inde-
pendent Gaussian processes. The array covariance matrixR =
E[x(i)xH(i)] = ASAH + �2In, whereS = E[s(i)sH(i)], �2
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is the noise variance,In is then � n identity matrix,E[�] and
(�)H denote the expectation operator and the Hermitian transpose,
respectively. Consistent estimates of eigenvectors and eigenvalues
of R are given by the eigendecomposition of the sample covari-
ance matrix [1]-[4]

R̂ =
1

M

MX
i=1

x(i)xH(i) = ÛS�̂SÛ
H

S + ÛN �̂N Û
H

N ; (2)

where thêq� q̂ and(n� q̂)� (n� q̂) diagonal matriceŝ�S and
�̂N contain thêq andn� q̂ signal and noise subspace eigenvalues,
respectively; the columns of then � q̂ andn� (n� q̂) matrices
ÛS andÛN contain the signal and noise subspace eigenvectors,
andq̂ is any consistent estimate ofq.

The dimension of array observations can be reduced by the so-
called beamspace preprocessing [5]y(i) = THx(i) wherey(i)
is thep � 1 vector of beamspace observations,T is then � p
beamspace matrix satisfyingTHT = Ip.

Thep� p covariance matrix of beamspace observations reads

RB = E[y(i)yH(i)] = T
H
ASA

H
T + �2Ip : (3)

Similarly to (2), consistent estimates of eigenvectors and eigenval-
ues ofRB can be found from the eigendecomposition of thep� p
sample beamspace covariance matrix:

R̂B =
1

M

MX
i=1

y(i)yH(i) = ÊS�̂SÊ
H

S + ÊN �̂N Ê
H

N : (4)

Using (3) and (4), elementspace algorithms can be easily refor-
mulated in beamspace domain. For example, the beamspace root
MUSIC polynomial can be expressed as [6]

fB�MUSIC(z) = a
T (z�1)T ÊN Ê

H

NT
H
a(z) ; (5)

wherea(z) = (1; z; : : : ; zn�1)T . The source DOA’s can be found
from the appropriately selected roots of (5) [3], [4].

2. BEAMSPACE ROOT ESTIMATOR BANK

The concept of estimator bank was introduced in [1]. Given the
n � M data matrixX = [x(1);x(2); : : : ;x(M)], the idea is
to generate multipleunderlying DOA estimators and then to com-
bine appropriately their results in the final DOA estimate. Given
arbitrary beamspace root estimatorsfi(z), i = 1; : : : ;K (which
are computed using the matrixX), let us say that these estimators
form the estimator bankF = ffi(z); i = 1; : : : ;KgX of the



dimensionK. It is very suitable to generate the estimator bank
pseudorandomly [1]. This allows one to choose the dimensionK
dynamically, based on the required compromise between the com-
putational cost and threshold performance [1]. For this purpose,
weighted beamspace root MUSIC estimators can be exploited:

fW (z) = aT (z�1)T ÊNWÊ
H

NT
H
a(z) ; (6)

whereW is the(p � q̂) � (p � q̂) non-negative definite weight-
ing matrix. Now, the underlying estimators can be generated via
withdrawal of the rank-one weighting matricesW i, i = 1; : : : ;K
from the complex Gaussian random generator:

W i = wiw
H
i ; wi � CN (0; Ip�q̂); i = 1; : : : ;K : (7)

In the case of non-uniform array, the interpolated ULA should
be exploited to allow the application of root estimators. The inter-
polated approach [4] is based on the idea that the manifold of a vir-
tual ULA can be obtained via linear interpolation of the real non-
uniform array within a limited angular sector. In elementspace,
then� r interpolation matrixB obeysBHa(�) ' �a(�) for any
angle� within the sector[�min; �max], wherea(�) and �a(�) are
then� 1 andr� 1 steering vectors of real and interpolated array
manifold, respectively. The interpolation matrixB is computed
by a least squares fit [4].

Ther � r covariance matrix of the virtual array is given by

RI = B
H
RB = BH

ASA
H
B + �2BH

B : (8)

For r � n the interpolated sample covariance matrix should be
“prewhitened” as [4]

R̂I = (BH
B)�1=2BH

R̂B(BH
B)�1=2 : (9)

Applying ther � p (q < p � r) beamspace transformationT
to ther � 1 data vectors�x(i) = (BHB)�1=2BHx(i), we ob-
tain the beamspace interpolated observations�y(i) = TH �x(i) =

TH(BHB)�1=2BHx(i) with thep� p covariance matrixRB�I

= E[�y(i)�yH(i)] given by

RB�I = T
H(BH

B)�1=2BH
RB(BH

B)�1=2T : (10)

The structure of (10) enables the application of root MUSIC and
weighted root MUSIC algorithms. Define thep � p beamspace
interpolated sample covariance matrix

R̂B�I =
1

M

MX
i=1

�y(i)�yH(i) = TH
R̂IT

= TH(BH
B)�1=2BH

R̂B(BH
B)�1=2T : (11)

Similarly to (2) and (4), write the eigendecomposition of (11) as

R̂B�I = V̂ S�̂SV̂
H

S + V̂ N�̂N V̂
H

N : (12)

For a uniform virtual array�a(�) = a(z), wherea(z) has the same
structure as before but another dimensionr � 1. Using (10)-(12),
express the polynomial of weighted interpolated beamspace root
MUSIC as

fW (z) = a
T (z�1)(BH

B)�1=2T V̂ NWV̂
H

N

�TH(BH
B)�1=2a(z) : (13)

ForW = Ip�q̂ , (13) yields the non-weighted interpolated beam-
space root MUSIC polynomial

fB�I�MUSIC(z) = a
T (z�1)(BH

B)�1=2T

� V̂ N V̂
H

NT
H(BH

B)�1=2a(z) : (14)

3. BEAMSPACE ROOT PR-JES

Elementspace spectral PR-JES [1] exploits the preliminary knowl-
edge of source localization sectors�S . However, the same knowl-
edge is required for the design of array interpolation and beams-
pace matrices. It is very suitable to estimate these sectors once,
and then to exploit the same estimate of�S in PR-JES, as well as
for the design of the matricesT andB. In multiple sector case,
different beamspace and interpolation preprocessing are necessary
within each sector. Each underlying estimator is represented now
as a polynomial set of the dimensionL, whereL is the total num-
ber of such sectors. Hence, PR-JES has more complicated struc-
ture than given in [1], because is applied now to the underlying
polynomial sets rather than to the underlying estimators.

Consider the polynomial setffi(z)gLi=1 associated with an
arbitrary estimatorf(z). Let theith polynomialfi(z) from this
set hasNi selected roots [4] associated with the angles localized
within an arbitrary interval[�a;i; �b;i]. DefineN =

PL

i=1Ni.
The following hypothesis will be used for sorting out the “suc-
cessful” estimators:

H : N � q̂ : (15)

(15) can be interpreted as the test on the presence of more than
q̂ � 1 sources in̂�S .

Now, the proposed beamspace root implementation of PR-JES
[1] can be summarized for given data matrixX and estimatêq as
follows:
Step 1: Specify the estimate of source localization sectors asL

non-overlapping intervalŝ�S = [�a;1; �b;1] [ [�a;2; �b;2] [ � � � [
[�a;L; �b;L].
Step 2:For each interval[�a;i; �b;i] compute the interpolation and
beamspace matrices and the beamspace root MUSIC polynomial
(14). Denote this polynomialfi(z). As a result of this step,L dif-
ferent polynomialsfi(z), i = 1; : : : ; L are available for different
intervals[�a;i; �b;i], i = 1; : : : ; L.
Step 3:For each interval[�a;i; �b;i], i = 1; : : : ; L, find the roots
fzi;1; zi;2; : : : ; zi;Ni

g of fi(z) associated with the angles local-
ized within[�a;i; �b;i]. Test the hypothesis (15). If (15) is accepted
then estimate source DOA’s from thêq closest to the unit circle
roots selected from the rootsfz1;1; z1;2; : : : ; z1;N1 ; z2;1; z2;2; : : : ;
z2;N2 ; : : : ; zL;1; zL;2; : : : ; zL;NL

g. Then, the algorithm is termi-
nated (go to step 6). If (15) is not accepted, go to the next step.
Step 4:GenerateK pseudorandom vectorswl, l = 1; : : : ;K us-
ing (7) and computeK underlying polynomials (13) for each in-
terval [�a;i; �b;i] using the previously computed interpolation and
beamspace matrices for these intervals. Denote these polynomials
f
(l)
i (z), i = 1; : : : ; L, l = 1; : : : ;K. As a result,K polynomial

setsff (l)i (z)gLi=1, l = 1; : : : ;K are available.
Step 5:For each interval[�a;i; �b;i], i = 1; : : : ; L, and each un-

derlying polynomialf (l)i (z) corresponding to this interval, find
the rootsfz(l)i;1; z

(l)
i;2; : : : ; z

(l)

i;N
(l)
i

g associated with the angles local-

ized within [�a;i; �b;i]. HereN (l)
i is the number of such roots of

the polynomialf (l)i (z). For each polynomial setff (l)i (z)gLi=1, set
Ni = N

(l)
i , and and test the hypothesis (15). If (15) is accepted

for anyJ (0 < J � K) polynomial sets, say,f ~f (l)i (z)gLi=1, l =
1; : : : ; J from the total number ofK polynomial setsff (l)i (z)gLi=1,

l = 1; : : : ;K then for each polynomial~f (l)i (z) find the roots
f~z(l)i;1; ~z

(l)
i;2; : : : ; ~z

(l)

i; ~N
(l)
i

g associatedwith the angles localized within



[�a;i; �b;i]. Here ~N
(l)
i is the number of such roots of the polyno-

mial ~f (l)i (z). Estimate thekth DOA as

�̂k = med f~�
(1)
k ; ~�

(2)
k ; : : : ; ~�

(J)
k g ; k = 1; : : : ; q̂ ; (16)

where~�(l)1 < ~�(l)2 < � � � < ~�(l)q̂ is the ordered set of angles asso-
ciated with theq̂ closest to the unit circle roots selected from the
rootsf~z(l)1;1; ~z

(l)
1;2; : : : ; ~z

(l)

1; ~N
(l)
1

; ~z(l)2;1; ~z
(l)
2;2; : : : ; ~z

(l)

2; ~N
(l)
2

; : : : ; ~z(l)L;1;

~z(l)L;2; : : : ; ~z
(l)

L; ~N(l)
L

g. In (16), the median averaging is defined as

med fb1; : : : ; bhg =

�
(ch

2
+ ch

2 +1
)=2; even h

ch+1
2
; odd h

; (17)

wherefc1; : : : ; chg = sort fb1; : : : ; bhg andsort f� � �g denotes
the operator of sorting in ascending (descending) order. If (15) is
not accepted for allK polynomial setsff (l)i (z)gLi=1, l = 1; : : : ;K
then estimate thekth DOA as

�̂k = med f�
(1)
k ; �

(2)
k ; : : : ; �

(K)
k g ; k = 1; : : : ; q̂ ; (18)

where�(l)1 < �
(l)
2 < � � � < �

(l)
q̂ is the ordered set of angles local-

ized in the whole array field of view[�90�; 90�], and associated
with the q̂ closest to the unit circle roots selected from the overall
number ofL(r � 1) roots of the polynomial setff (l)i (z)gLi=1.
Step 6:End of algorithm. 2

4. SIMULATION RESULTS

In our simulations, we assumed a linear array of ten omnidirec-
tional sensors. Two array geometries were used (with sensor po-
sitions in lambdas):[0:00; 0:50; 1:00; 1:50; 2:00; 2:50; 3:00; 3:50;
4:00; 4:50] (ULA), and[0:00; 0:14; 0:46; 1:92; 2:17; 2:26; 3:32;
3:46; 3:62; 4:37] (non-uniform). The first (ULA) geometry corre-
sponds to the real array in simulations with non-interpolated algo-
rithms, whereas the second, non-uniform geometry corresponds to
the real array in simulations with interpolated techniques. In the
latter case, the virtual array was always assumed to have the ULA
geometry. Two uncorrelated equi-power Gaussian sources from
�1 = 20� and�2 = 22�, white Gaussian noise, andM = 100
were assumed. The comparison of performance is given in terms
of DOA estimation RMSE (averaged over both sources and 100
simulation runs). The stochastic CRB was also plotted. We as-
sumedq̂ = 2, �̂S = [13:5�; 28:5�], andp = 7. Fig. 1 shows
the RMSE’s of non-interpolated methods versus SNR. The dimen-
sion of estimator bank wasK = 20. Beamspace root PR-JES is
observed to perform better than elementspace spectral PR-JES and
both MUSIC algorithms. In particular, it has much smaller asymp-
totic RMSE misadjustment (relative to CRB) than elementspace
spectral PR-JES and MUSIC. The asymptotic performances of be-
amspace root PR-JES and beamspace root MUSIC are similar but
the former has the lower SNR threshold. The performance of
beamspace root PR-JES is nearly identical to that of elementspace
and beamspace stochastic ML. Fig. 2 compares the RMSE’s of in-
terpolated and non-interpolated beamspace root versions of MU-
SIC and PR-JES versus SNR for the fixedK = 20. The inter-
polated and non-interpolated versions of each algorithm are ob-
served to perform very similarly, and interpolated PR-JES has bet-
ter threshold performance than interpolated MUSIC.

Figs. 3 shows the RMSE’s versusK for the fixedSNR =
0 dB. Again, interpolated and non-interpolated beamspace root
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Figure 1: RMSE’s of non-interpolated methods vs. SNR.
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Figure 2: RMSE’s of beamspace root MUSIC and PR-JES vs.
SNR.
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Figure 3: RMSE’s vs.K for the fixedSNR = 0 dB.



PR-JES have very similar performance. Both these algorithms are
observed to perform better than other techniques. They need lower
dimension of estimator bank for convergence to CRB than ele-
mentspace spectral PR-JES. Moreover, PR-JES can perform even
better than stochastic ML if the dimension of estimator bank is
sufficiently large.

5. RESULTS OF REAL DATA PROCESSING

To test the algorithms, we used the experimental ultrasonic data
recorded at University of Wyoming Source Tracking Array Testbed
(UW STAT) [7]. These narrowband 6-element array data are avail-
able on the World Wide Web [7]. The dataset no. 3 with one sta-
tionary and one constant velocity source was used (corresponds
to Fig. 2 in [7]). Similarly to [7], the forgetting factor was0:97.
Figs. 4 and 5 show the estimated source trajectories using beam-
space root MUSIC and elementspace stochastic ML, respectively.
Fig. 6 shows the estimated source trajectories using beamspace
root PR-JES withK = 20. The spatial sectors�S have been
estimated using the conventional beamformer andp = 5 was as-
sumed. Figs. 4-6 show that both root MUSIC and ML have serious
problems that are manifested in multiple strong outliers, which are
mainly concentrated between 300-th and 600-th snapshots (where
the sources are closely spaced). The high variability of ML esti-
mate can be explained by possible mismatch of underlying model
and real data. We tried to avoid the convergence problems taking
the parameters of the optimization routine (genetic algorithm) so
that they provide full global convergence in similar simulated data
examples. Beamspace root PR-JES is observed to overcome the
problem of outliers, i.e. to have quite stable behavior.

6. CONCLUSIONS

Motivated by the superior performance and reduced computational
complexity of beamspace and root implementations of eigenstruc-
ture techniques, the beamspace root modification of the PR-JES
technique has been developed. Computer simulations and real
ultrasonic data processing have demonstrated its superior perfor-
mance.
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Figure 4: Results of real data processing.
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Figure 5: Results of real data processing.
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Figure 6: Results of real data processing.


