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ABSTRACT A variety of parameters have been reported for
) ] o wavelet evaluation. Buschgens and Hartenstfh have
In this paper we assess the relative meritganious types of  extended the evaluation criteria to include the number of

wavelet functions fouse in a wide range of image cpression  yanishing moments, step response error, linear phase and time
scenarios. We have delineated different algorithmic critbah frequency resolution. Ithe process they indicaténat linear

can be usefbr wavelet evaluationThe assessment undertaken phase and shift varianegenot avery helpful criteriafor such

includes both algorithmic aspects (fidelity, perceptual quality) an evaluation. Rioul in [7] has stressed the use of regularity as a

as well as suitabilityor real-time implementation in hardware.  criterion for bettercontrol over stop-bandttenuation and this
The results obtained indicate that of the wavelets studied themakes Daubechies filters a bettehoice for compression.

biorthogonal 9&7taps wavelet is thenost suitable from a DeVore et al [8] haveused the [ norm asthe evaluation
compression perspective atttat the Daubechies 8 tagses criteria andconcludedthat the L norm isthe closest tduman
best performance when assessgalely interms of statistical  vjsual system. Coding gain, definedths ratio of variances of
measures. the originalimage andthe sub-bands has been used as an
evaluation criterion by Andrew et al [9, 1Hhillipe et al[10],
1 INTRODUCTION Calvagno et al [12and Buschgens [6]. Villasenor et al [13, 14]
Wavelet transforms have establishéir viability in image have adopted a more analytical evaluation criterion based on

compression applications. This isainly due to the lapped  impulse and step response of a linear shift vargystem.
nature of thigransform and theomputational simplicity which Another interesting measure of coder quality is ‘picture quality
comes inthe form of filter bank implementation. Thevork in scale PQS’ introduced by Lu and Estes [17]. This measure maps
this paper attempts to answer the basic questiomhich various distortion factors to a single quality scale and the
wavelet is most stable for designing an image compression Ppicture is rated in terms of perceived distortion. In addition to
system? Inparticular, we present a qualitative measure of these criteria, the normalised mean square error ratio (NMSE)
image quality after being analysed and synthesised by a wavele@ind peak signal to noise ratio (PSNR) anéversally used for
based image coder. The paper first expl#tesuse of wavelets ~ the measurement dfage quality. Another useful measure of

in image codingand the criteria that has been u$edwavelet wavelet effectiveness iss ability to represent the signal in as
evaluation. Thechoice of waveletand images is then listed ~few non-zero coefficients gmssible. This has been defined as
followed by the experiments and results obtairfesin their ‘sparsity’ [19]. The compression performance resulfirogn a
evaluation. wavelet decomposition is measuredtiénms of the number of
zero coefficients [8], [15], [16].
2 WAVELETS IN IMAGE CODING In this paper, we report the result of wavedatlysis

and synthesis on a range of images representing different
classes.Word length constraintavere put on transformed
coefficients and various parameters of reconstructed images
were measured.

Many different kinds of waveleexist in literature. Thehoice
of a suitable wavelet functions for image codingtii an open
question. Many interesting imagecoding schemedased on
wavelets have recently been presentednamy applications.

They are based on a particular wavelet, quantizationeme 3 CHOOSING WAVELETS AND IMAGES
and more importantlyhey are targeted towardsspecific class
of images. 3.1 Choice of Wavelets

The quantization andntropy codepart of animage . -
coding system have drawn considerable attention in rgeans The range of wavelets Wh.'Ch can heslised to evaluate
due to JPEG, MPEG-1 and MPEG-2 standards. The transformperformancg can be an impractically large number. For
part comprising wavelet analysis and synthefilters has exa”?p'e' V_|Ilasenor etal in [1.3] and [14] hanvgedover 43(.)0
become the subject of reseanntly in lastfew years. There has gandldate fllter_bank[srom theblorthogonal famllybutonly SIX
been at least one standard defined for wavelet based finger prinfIlter ban_ks give _acc_eptableresu'lt in terms of Image
compression by FBJ[1]. This standard allowshe use of any compression appllcatlons. Balasingham et al [18] have
wavelet filter up to a length of 32 taf3bviously a good choice Fvalt’ﬁtfe.l? 11b60 {(llters_out t?]f a‘lt_otal ,O f O\ée‘rB7Ot,)OOO‘qddeanmd1 d
of wavelet significantly improves coding performance, fidelity ength TIiter banks using the L.ena an arbara’ images an
and image perceptual quality [20]. could not reach at a definitive conclusion. We have adopted an

approach similar tothat of Andrew et al [9] in selecting



wavelets for evaluatiorexperiments. We havéocused our
choice of wavelets on the following options:

1. Wavelets which have been applied and testedmimge
compression applications, and

Wavelets whickare potentially attractivélom the point of
view of real time implementation and practical realisation.
We have also avoided longer filters becausthefringing

at the boundary’ effect [20].

The secondriteria seeks to minimise the number of
real number multipliers requirefdr hardware implementation.
For a single level image decompositisin filters are required
[20]. The wusual requirement of three levels necessitates
eighteen filters and a large buffenemory to store the
intermediate resultdzrom a practicatechnologypoint of view
it was decided to reduce tleloice of wavelet to oneith ten
taps or less and toonsidertheir use inconventional video or
HDTV applications. The wavelets investigated were as follows:
1) ‘Biorthogonal with 9 and Taps’ (bior9&7); theséave been
approved bythe FBI as part of theirfinger print conpression
standard [1], [16].

2) ‘Daubechies 4 taps ' (daub2);
implementations exist [2].

3) ‘Daubechies 8 taps’ (daub4); tldentains a high number of
vanishing moments, possesses regularity and it is suitable for
dealing with details in images [11].

4) ‘Biorthogonal with 9 and 3taps’ (bior9&3); this is
symmetric and suitable for integer implementation [3].

5) ‘Short Kernel' (shortkern); this wagroposed for fast
implementation of sub-band coding [4].

6) ‘Bath 6 taps’ (baluncer); this is based on the minimisation of
the diagonal of a Heisenberg uncertainty rectangle and
maximises the psychovisual quality [5].

2.

multiplier-less and integer

3.2 Choice of Images

The following 256 level grey scale (8 bits) images, of size 256 x
256, were chosen for the experiments undertakanh of these

is a representative of typical classes encountered in image
compression applications:

1) The imageairport’ for aerial and satellite photography.

2) The imagecircuit’ for PCBs, lithographic data.

3) The imagefingerp’ for finger prints.

4) The image compgen is typical of computer generated
‘lego’ blocks with regular and well defined boundaries.

5) The imageléna, representative of the human face.

6) The imagerhedical typical of MRI scan pictures.

7) The image microorg’ typical of microscope photographs
obtained from pathological objects.

8) The imagescené this is a natural harbour scene.

3.3 Choice of Evaluation Criteria

In order to reach a quantitativeonclusion based on
experimentation the following measures were investigated:
Signal to Noise Ratio (SNR),

Compression score percentage,

Recovery of pixels,

Picture Quality Scale (PQS) i.e. psychovisual tests,
Implementation efficiency.

aprpODE

The evaluation experiments were carried out at
successively increasing quantization levels (also defined as bin-
width). The step size was chosen d8vest) starting from
‘rounding to the nearest integer’ (level 1) to 32 (level 6) This
also produces improvements in different aspects of coding, such
as reduction in thenemoryrequired to store the results and
reductions in the length otode books. From evaluation
perspective, this enabled us to determine the degree of
‘sparsity’ of each wavelete. the bettewavelet would have
more energy compaction setting the smallecoefficients to
zerohas a lessegffect on image quality. All experiments were
performed with azero padding extension tdeal with the
boundary effects of finite length signals [20].

4 RESULTS AND DISCUSSION
4.1 Signal to Noise Ratio

The signal to noise ratio values obtained vary from one image to
another. It was observdtat at allquantization levels, images
with greater detail (e.g. fingerp, airpogenerally produce a
betterSNR in comparison to other images. ThestSNR was
obtained using Daubechies 8 taps wavdtgiowed by the
‘baluncer’ and ‘bior9&7’ wavelets. The worst performer was
the Short Kernel filtewhich shows a difference of about 6 dBs
at all threshold values. Th8NR for ‘circuit’ at different
quantization levels is plotted in figure 1. The trend illustrated
for this image is similar tothe other images excephat in
images containindess detail SNR valuesare typically 3 to 8
dBs lower.
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Fig 1: Variation of SNR for image ‘circuit’

4.2 Compression Score Percentage

The compression performance was evaluated by determining the
percentage of zeros the transformedoefficients at different
quantization bin widths. At quantization levels 1 and 2, the
‘bior9&3’ wavelet producedhe bestcompression performance
(11% and 25% for ‘fingerp’ respectively). This wiaiowed by
‘bior9&7’ with about 2% lesserzeros (10% and 23%
respectively). Other filtergypically produced values which are
3% less. For the worst case scenari@i.e. the highest
quantization level), theperformance of ‘bior9&7’ was
marginally better than ‘bior9&3’followed by other wavelets.



Similar patterns in theompression score were observed in all
images. The results for ‘fingerp’ are shown in figure 2.
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Fig 2: Compression increase for image ‘fingerp’
4.3 Recovery of Pixels

The purpose of an imageding system is to redutiee number
of bits required to store or transmit an imagedding so, the
system should beble torecover information nobnly is a

statistical sense (NMSE) but also in terms of exact values. This

is a very stringent requirement irany coding system. For
example, theFBI finger print compression standard calls for
over 99% recovery ofexact pixel values. The pixel values

obtained after reconstruction were truncated and compared to

original pixels. It was founthat all wavelets, afteanalysis and

synthesis at lowest quantization level (rounding to nearest

integer), offered100% exact reconstruction of pixel values.
This showsthat using integer or fixed point representation for

transformed coefficients does not affect system performance. As
the quantization bin-width increases this value decreases as 1 2 3 4 5 6

illustrated in figure 3.

The performance of each wavelet cdhen be
established on the basis of the percentagexattly recovered
pixels. At quantization levels of 2nd 2, it was foundhat the
Daubechies 8 taps and 4 taps wavetdfsr highestrecovery
values respectively. The performance of ‘daub2’ and ‘baluncer’
was better, at quantization level, zhan other wavelefsr all
but ‘compgen’and ‘medical’ images. For thesso images the
biorthogonal filters (both 9&7 and 9&3 taps) gavesdter pixel
recoverythan other wavelets. At thisvo highest quantization
levels, the exaatecovery ofpixels in allwavelets was nanore
than 15% excepfor the ‘compgen’ and ‘medical’ images.
These produced values aiver 20% recovery with some
wavelets. This observation can be attributedhi® presence of
large smooth surfaces these images. Moreover, these images

zoomingand panning in order toompare thenwith original
images. The subjective quality obtainiedm all wavelets was
comparableuntil a threshold level of 4. The variationimage
quality became discernible at threshold levels of 8 amale.
The observations reported beloare thereforefor higher
quantization levelsonly. The ‘shortkernel’ filters proved
inferior in all cases because of a pronounced checkerboard
effect inall images. Ringing athe boundarywas observed with
the ‘baluncer’ and ‘daub4’ wavelets when used with the ‘lena’
and‘microorg’ images. The imagirport’ showed blockiness
along features such as buildingsd runways forall wavelets
examined. The performance of ‘daub2’ prowkd best in this
image. The biorthogondilters did not show anyringing or
checkerboard effects in any tife images investigated. In the
‘fingerp’, ‘airport’ and ‘microorg’ images artefacts (mainly
region growing and merging, loss ofdetails) became
objectionable at threshold

level 8. In all other images, the loss of details in imdgEame
objectionable at threshold level 16 and above.
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Fig 3: Recovered pixels for ‘lena’
4.5

An important criteria  in consideringthe real time
implementation in silicon aiiny DSP function ishe number of
multipliers involved. This ultimately determines the silicon area
required,performance and power consumption. The number of
multipliers requiredor each wavelet type for a single analysis
block comprising lowpasand highpass filters is summarised in
table 2. Where it is possible to reduce this number, for example,
through exploitation of symmetry, this is also listed.

The main difference between thlewthonormal and
biorthogonalfilters, from animplementation perspective is the
symmetry/anti-symmetrgxhibited by the latter. Thiseduces

Implementation Efficiency

are computer generated and, as such, possess regular boundarid number of multipliers by halfrom an implementation

and have minimal noise characteristics. The coefficiesuvery
pattern for the ‘lena’ image is shown in figure 3.

4.4 Psychovisual Evaluation

Due to the‘non-block’ basednature of sub-bandoding, the
image quality degrades gracefully. Mhis experiment the

images were transformed, quantized and synthesized. The

reconstructed images were testid subjective quality by

point of view short kernel filter@re attractive becaugsbey
involve coefficients values whiclare powers of two. This
means that multipliersan be implemented using simply shift
operations. The biorthogonal 9 andaps wavelet is attractive
becauseonly integer arithmetic is required. Moreover, after
simplification, the number of multipliers reduces to just seven.
The implementation of Daubechies 4 taps filter without
multipliers described by Lewis and Knowles [2] is attractive but



cannot be generalised. Theast attractive waveletérom an [5]
implementation point of vieware the Daubechies 8 taps and
balanced uncertainty for which no simplification exists.

[6]

Type of Filter | Number of | Reduced Remarks

multipliers number
Biorthogonal 9+7 =16 5+4 = 9 | Real coefficients
9&7
Daubechies 4 4+4=8 8 Iplementation without [7]
taps multipliers is reported
Daubechies § 8+8 =16 16 Real multiplications
taps [8]
Biorthogonal 9+3 =12 5+2 =7 | Integer coefficients
9 &3
Short Kernel 4+4 =8 8 Integr/powers of 2

coefficients

Balanced 8+8 =16 16 Real coefficients 9]
Uncertain

Table 1: Multipliers required for implementation

5 CONCLUSION

Through aseries of different tests waave quantitatively
evaluated the suitability of different waveldts use inimage
compression systems. Thesults indicate that the cqmession
performance of biorthogondilters is better than the rest.
However, in terms ofstatistical measures, the Daubechies
filters performbetter. The decision to use a particitamily of
wavelets then depends on implementatammplexity. Good
choicesare thebior9&3 and daub2 wavelets becaukey can
both be implemented using integer arithmetic. If a real number
implementation is possible then the ‘bior9&7’ and ‘daub4’
wavelets aregood choices althoughthe former should be
preferred because @6 symmetric impulse responsehis leads

to a reduction in the number of multipliers required. The
discussion in this paper also leads to anotioeiclusion on the
suitability of wavelets for image compression. Since each
wavelet filter gives a different performance for different
evaluation measures and different images, it is appropriate to[15]
tailor the choice of wavelet to darget application area and
available bit budget. Based @ompression efficiency, visual
results and implementatioefficiency we concludghat the

[10]

[11]

[12]

[13]

[14]

biorthogonal 9&7 waveldilters appear to be well suited to the [16]
real-time image compression systems.
6 REFERENCES [17]
[1] C. Brislawn, J. Bradley, ROnyshczak, T. HoppefThe
FBI compression standard foudigitized fingerprint [18]
images; Proceedings SPIE, Aug. 1996 (Pre-print)
[2] A. Lewis, G. Knowles;image Compression Using the 2-
D Wavelet Transform' IEEE Transactions on nbage
Processing, April 1992, pp 244-250 [19]
[B] M. Shnaider, A. Paplinskiwavelet Transform in Image
Coding’, Monash University, Australia, Technical Report
94-11 (Pre-print) [20]

[4] D. Le Gall, A. TabatabaiSub-band Coding of Digital
Images Using Symmetric ShoKernel Filters and
Arithmetic Coding Techniques’ProceedingsICASSP,
1988, pp 761-764

D. Monro, B. Bassil, G. DicksorOrthonormal Wavelets
with Balanced Uncertainty’ ProceedingsICIP 96, 4
pages (Pre-print)

T. Buschgens, F. Hartensteifinding the RighiwWavelet
for Image Compression: On the Relevance of Criteria’
IEEE Digital Signal Processing Workshop, 1996 pp 53-
56

O. Rioul, ‘On the Choice of “Wavelet” Filterdor still
image compressionProceedings ICASSR993, pp V-
550-553

R. A. DeVore, B. Jawerth, B. J. Lucief)mage
Compression Through Wavelet Transfd@woding’, IEEE
Transactions on Information Theory, Mard®92, pp
719-746

J.P.Andrew, P.O. Ogunbon&.J. Paoloni;Coding gain
and spatial localisation properties dafiscrete wavelet
transform filters forimage coding’ IEE Proceedings
Vision Image andSignal Processing, June 1995, 1§8-
140

P. Phillipe, F. Moreau de Saint-Martin, L. Mainatf@n
The Choice of Wavelet Filters Féwudio Compression’
Proceedings ICASSP, 1995, pp 1045-1048
J.P.Andrew, P. O. Ogunbon&,J. Paoloni;Comparison
of “Wavelet” Filters and Subbandnalysis Structure for
Still Image Compression’Proceedings ICASSPL994,
pp V-589-592

G. Calvagno, G. AMian, R. Rinaldo,Computation of
Coding Gain for Subband Coder$EEE Transactions on
Communications, April 1996, pp 475-487

J.D. Villasenor, B. Belzer, J.iao, ‘Filter Evaluation
and Selection in Wavelet Image Compression’
Proceedings IEEBata Compression Conference, 1994,
pp 351-360

J.D. Villasenor, B. Belzer, JLiao, ‘Wavelet Filter
Evaluation forimage Compression’lEEE Transactions
on Image Processing, August 1995, pp 1053-1060

Z. Yang, MKallergi, R.A.DeVore, B.J.Lucier, W.Qian,
R.A.Clark, L.P.Clarke,‘Effect of Wavelet Bases on
Compressing Digital MammogramaEEE Engineering
in Medicine and Biology, Sep/Oct 1995, pp 570-577

A. Manduca, ‘Compressing Images with
Wavelet/Subband Coding’ IEEE Engineering in
Medicine and Biology, Sep/Oct 1995, pp 639-646

J. Lu, R. R. Estedr., ‘Comparative Study oWavelet
Image Coders’'Optical Engineering, September 1996, pp
2605-2619

I. Balasingham, T.A.Ramstad, J.M.LervikSurvey of
Odd and Even Length Filters in Tree-Structured filter
Banks for Subbandmage Compression’Proceedings
ICASSP, 1997

H.M.Polchlopek, J.P.Noonan,'Wavelets, Detection,
Estimation, and Sparsity’ Digital Signal Processing,
Academic Press, No. 7, 1997, pp 28-36

G.Strang, T.Nguyen,'Wavelets and Filter Banks’
Wellesley Cambridge Press USA, 1996, pp 337-342



