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Abstract— The design of 3-D multirate filter banks
where the downsampling/upsampling is on the FCO
(Face Centered Orthorhombic) lattice is addressed in
this paper. With such a sampling lattice, the ideal 3-D
subband of the low-pass filter is of the TRO (TRuncated
Octahedron) shape. The transformation of variables has
been shown previously to be an effective technique for
designing M-D filter banks. We present a design tech-
nique for the transformation function using the multi-
variate Bernstein polynomial which provides good ap-
proximation to the TRO subband shape. The method is
analytically based and does not require any optimization
procedure. Closed form expressions are obtained for the
filters of any order. Another advantage of this technique
is that it yields filters with a flat frequency response at
the aliasing frequency (w1, w2, ws) = (7, 7, 7). The flatness
is important for giving regular Discrete Wavelet Trans-
form systems.

I. INTRODUCTION

Previous work [1] has demonstrated the flexibility
and simplicity of the transformation of variables de-
sign technique. It is the relative ease in designing the
transformation function that makes the technique an
effective one. A good approximation to complicated
subband shapes such as the TRO (see Figure 1) is
achieved. In the previous work [2] the design of the
transformation function was based on a combination of
windowing and the solution of linear constraint equa-
tions. The linear equation approach becomes cumber-
some when the size of the transformation is large. In
[2] the design of transformation functions of the size of
7 X 7 x T was considered. We present here an alternate
approach that uses the multivariate Bernstein polyno-
mial. Explicit analytical expressions are obtained for
the transformation function of any size.

Several authors have used the Bernstein polynomial
for designing filter and filter banks. Several properties
of 1-D FIR filters designed using the Bernstein polyno-
mial are presented in [3]. The design of 1-D orthogonal
filter banks is presented in [4]. The design of 2-D dia-
mond half-band filters is presented in [5]. The method
in [5] is used in [6] for designing filter banks. The design
of 3-D filter banks is also mentioned in [6]. However,
the result presented there is not appropriate for the

FCO lattice / TRO subband filter bank as it does not

provide the correct approximation to the TRO shape
and PR is not achieved.

II. THEORY

The general transformation of variables design the-
ory can be found in [1]. The formulation for the
FCO sampling case can be found in [2] (we refer
the reader to this reference for details). In this pa-
per we will only focus on the design of the trans-
formation function which is given by M(z1, 22,23) =
Zkl Zk2 Zka m(ky, ke, k3) zf1z§2z§3 where

0 for ki + ko + k3 = even
m(ki, k2, k) = arbitrary for ky + ks 4+ k3 = odd
The transformation function is related to a 3-D (TRO)
halfband filter: Hpp(z1, 22, 23) = %(1 + M (21, 22, 23)).
By deleting the coefficient at the origin of a half-
band filter impulse response, we obtain the transforma-
tion coefficient, i.e. m(ky, ka, ks) = 2hgp(k1, ko, ks) —
d(k1, ko, ks). In this paper we will use the Bernstein
polynomial to design the halfband filter which is sub-
sequently used to obtain the transformation function.

The 3-D Bernstein polynomial [7] is given by

B(x,y,z) =
yyy e (7)(5) (%)
A=)V T (1NN ()

where = % and f(i,j, k) are the Bern-

stein coefficients which defines the polynomial. The
domain of the function is the unit cube C: (z,y,z) €
C = [0,1]3. The coefficients values are sampled val-
ues from an i1deal function that the polynomial is try-
ing to approximate, i.e. f(i,4,k) = fr(¢/N,j/N, k/N).
The function fr(z,y, z) is defined over the continuous
valued support C'. To obtain the z-transform transfer
function, H(z1, 22, 23), the following mapping is applied
to B(x,y,2): # = —%zl(l—zfl)z, y= —%zz(l—zz_l)z,
z = —%z;),(l — 23_1)2.

If the Bernstein polynomial is to be used for half-
band filter design, it must satisfy



B(z,y,z)+ B(l—2,1—y, 1 —2z)=1. (2)

The condition on the Bernstein coefficients are given
by the following theorem:

Theorem 1: The neccessary and sufficient condi-
tion for B(z,y, z) to satisfy the HB condition (2) is:
Proof: To proof the sufficient part of the theorem, we
substitute (1) into the LHS of (2) which yields (after

some algebraic manipulation)
B(z,y,z)+ B(1 —»,1—
N

N N
=D 3 sl i k) + AN
A1 -2y (1
Using (3) and the binomial expansion identity
Sice e (1= o)V = (1 — )"
that LHS = RHS for equation (2).
To proof the neccessary part of the theorem, we let
FG, 5, k)+ F(N —i,N —j, N —k) = 1+p(4, j, k). Subti-
tuting (1) into (2) yields the following equation (after
simplification):

N N N

53 a1 -

=0 j=0k=0

y(1—yN (1~ = 0
This equation must be satisfied for all (z,y,2z) €
C. The only way this is possible is for p(i,j, k) =
0V 4,j, k. Hence (3) is neccessary. O
The degree of flatness of B(z, y, z) is the same at the
points (0,0,0) and (1,1, 1) due to symmetry (see (2)).
The degree of flatness determines the regularity of the
resulting wavelet filters [2] and can be determined by
using the following theorem:
Theorem 2: Let S > 0 (integer). Consider the fol-

lowing constraint:

y,l—Z)

PV = 2,

= 1, we have proven

Z)N—k

optatr B

W(O,O,O) =0 (4)

for all values of p,q and » that satisfy p+¢+r < S and
p,q,7 > 0. The neccessary condition for satisfying (4)
is:

AFAIATF(0,0,0) =0 for  p+qg+r<S  (5)
where AP is the pth forward finite difference along the
z direction of f evaluated at (i,j,k) = (0,0,0). Af
and A7 are the gth and rth difference along the y and
z directions respectively.

Proof: By applying Lemma 6.3.1 in [7] (pg. 112) to
each dimension of B(x,y, z) we have
8p+q+rB 0,0,0) = CALATATf(0,0,0 6

where C' > (' 1s a constant. The result follows immedi-
ately. O

III. BERNSTEIN POLYNOMIAL APPROXIMATION
DESIGN

For the TRO subband the plane T" = {(z,y,2) :
r+y+z = %} separates the passband P and the
stopband S regions. 7T is the plane that partitions the
unit cube C' into two equal halves (P and S) and it is
equidistant to the points (0,0, 0) (zero frequency) and
(1,1,1) (aliasing frequency). A 3-D grid of discrete
points is constructed in C'. FEach linear dimension (in
the range [0,1]) is uniformly sampled into N + 1 points
(see (1)). There are (N +1)2 discrete sampled points in
C'. For our designs we shall choose the following ideal
function for approximation:

(z,y,2) € P
(z,y,2) €T
(z,y,2) €S
The derivation of the analytical expression will not be
presented here for lack of space. There are two cases
to consider:
1. When N = 2M + 1 (odd). This is the simpler sit-
uation. All the discrete points are either in P or 5.
There are no points on 7. The Bernstein coefficients
f(%,J, k) values are either 1 or 0. The size of the result-
ing transformation function is 2N 4+ 1 = 4M + 3. The
expression for the impulse response 1s

h2M+1 9\7}1, na, n3)

M- 1

_Z Z Z K(ny,n2,n3;1, j, k)

k=0 i=0 =
2M+1 3M-|—1 k—i

Y Y

k=0i=M—-k+1 7=0
2M+4+1 3M+1-k3M+1-k—i

R ORP SR

k=M+1 i=0
2. When N = 2M (even) This is the more compli-

cated situation as some of the discrete points are on 7.

Some of the Bernstein coefficients f(¢, j, k) values are
%. The size of the resulting transformation function

18 2N +1 = 4M + 1. The expression for the impulse
response is

ff(xaya Z) =

O= =

K (nlanZanE};iaja k)

K(ni,n9,ns;4, 5, k). (7)

hane (01, na, n3)

[((nla Ng, N3; iaja k)

K (nlanZanE};iaja k)



+ > LK(ny,na,nsi, 3M — k—i,k)
=M

+ [((nlanZanE};iaja k)

2M 3M—k

+ > LK (n1,ny,ngi,3M —k—i k). (8)
k=M i=

In both cases it can be verified that condition (3) is
satisfied. Both (7) and (8) are defined for ny, ns, n3 =
0,1,...,2N. Note that the expressions obtained from
the Bernstein polynomial are non-causal zero-phase
functions (symmetrical about the origin), but the ex-
pressions above are the causal versions (a delay of

zl_sz_NzB_N is required). The function K is defined

as
K(ni,ne,na; i, j, k) =
S (D))
43N i j k
.SN(i,nl) SN(j, 77,2) SN(k’,ng)
where

min(2z,a)

Sy (e, a) = 3 (1)’ ( 2;“’ ) ( 2]2_12“3

I=max(0,a—2(N—-z))

The next theorem gives the degree of flatness.
Theorem 3: The degree of flatness of the filters in

(7) and (8) is S = N.

Proof: By extending equation (21) from [3] to 3-D, we

have

ALAIATF(0,0,0) =

SOSOS g K -1 (%)

1=0 j=0k=0

o (e () o

If f(i, 4, k) = constant in the summation, then by using
the binomial identity > F_ (—1)P~" ( ]z) ) =(1-1)P =

0, it is easily verified that (9) is zero. Now for the filters
in (7) and (8), f(¢,4,k) = 1 for (i,4,k) € Pp, where
Pp is the set of indices representing the discrete points
in . The indices in Pp can be obtained from the
summation indices in (7) and (8) (the third and fifth
sums in (8) which has the factor % is excluded). The
region P is bounded by the horizontal /vertical planes
z=0,z=1y=0,y=1,2 =0,z =1 and also by
the oblique plane 7. The planes * = 1, y = 1 and
z = 1 (corresponding to i = N, j = N and k = N)
respectively limit the values of p, ¢ and r to N (in
order for (9) to be zero). Hence by Theorem 2, (4) is
satisfied for S = N. O

IV. DEsiaN EXAMPLES

We shall consider slices of the 3-D frequency response
to give 2-D frequency response plots. The slices we
consider are across the plane ws = constant. The shape
of the ideal 2-D slice is shown in Figure 2. Ideally the
transformation has values 1 and —1 in the passband
and stopband respectively.

Ezample 1: N = 4. Formula (8) gives a transforma-
tion of size 9 x 9 x 9. The frequency response is shown
in Figure 3.

Ezample 2: N = 7. Formula (7) gives a transforma-
tion of size 15 x 15 x 15. The frequency response is
shown in Figure 4.

The responses start off with the value 1 in the pass-
band and eventually falls to the value —1 in the stop-
band as required by the specification. As the size of the
transformation increases, both the sharpness of roll-off
and the degree of flatness increase. Finally, note that
with N = 3, formula (7) gives the transformation that
is exactly the same as the transformation in Example
6.1 in [2]. The results here; and the comparison made
with the result in [2] verifies the formulas (7) and (8).

V. CONCLUSIONS

The multivariate Bernstein polynomial has provided
an easy and effective way of designing 3-D FCO/TRO
wavelet filter banks. Closed form analytical expressions
were obtained for designing the transformation func-
tion of any size and no optimization is required. Good
approximation to the TRO subband shape is achieved.
Arbitrarily flat frequency response 1s obtainable for giv-
ing regular Discrete Wavelet Transform systems.
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Fig. 1. Ideal passband with FCO sampling lattice: Truncated
Octahedron. Also shown is the unit frequency cell in 3D
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Fig. 3. 2D slices of the 3D frequency in Example 1: N =
Transformation size is 9 X 9 X 9. Top: slice across w3z = 0.
Middle: ws = /2. Bottom: wsz = 7.
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Fig. 2.
0<|ws|<n/2and b= n/2— |ws| (iI) 7/2 <|wsz|< 7
and a = 37/2— |ws]|.

Slice across the plane wz = const. for the TRO. (i)
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Fig. 4. 2D slices of the 3D frequency in Example 2: N = 7.
Transformation size is 15 X 15 X 15. Top: slice across wy = 0.
Middle: ws = 7/2. Bottom: ws = 7.



