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Abstract| The design of 3-D multirate �lter banks
where the downsampling/upsampling is on the FCO
(Face Centered Orthorhombic) lattice is addressed in
this paper. With such a sampling lattice, the ideal 3-D
subband of the low-pass �lter is of the TRO (TRuncated
Octahedron) shape. The transformation of variables has
been shown previously to be an e�ective technique for
designing M-D �lter banks. We present a design tech-
nique for the transformation function using the multi-
variate Bernstein polynomial which provides good ap-
proximation to the TRO subband shape. The method is
analytically based and does not require any optimization
procedure. Closed form expressions are obtained for the
�lters of any order. Another advantage of this technique
is that it yields �lters with a at frequency response at
the aliasing frequency (!1; !2; !3) = (�; �; �). The atness
is important for giving regular Discrete Wavelet Trans-
form systems.

I. Introduction

Previous work [1] has demonstrated the exibility
and simplicity of the transformation of variables de-
sign technique. It is the relative ease in designing the
transformation function that makes the technique an
e�ective one. A good approximation to complicated
subband shapes such as the TRO (see Figure 1) is
achieved. In the previous work [2] the design of the
transformation function was based on a combination of
windowing and the solution of linear constraint equa-
tions. The linear equation approach becomes cumber-
some when the size of the transformation is large. In
[2] the design of transformation functions of the size of
7� 7� 7 was considered. We present here an alternate
approach that uses the multivariate Bernstein polyno-
mial. Explicit analytical expressions are obtained for
the transformation function of any size.

Several authors have used the Bernstein polynomial
for designing �lter and �lter banks. Several properties
of 1-D FIR �lters designed using the Bernstein polyno-
mial are presented in [3]. The design of 1-D orthogonal
�lter banks is presented in [4]. The design of 2-D dia-
mond half-band �lters is presented in [5]. The method
in [5] is used in [6] for designing �lter banks. The design
of 3-D �lter banks is also mentioned in [6]. However,
the result presented there is not appropriate for the
FCO lattice / TRO subband �lter bank as it does not

provide the correct approximation to the TRO shape
and PR is not achieved.

II. Theory

The general transformation of variables design the-
ory can be found in [1]. The formulation for the
FCO sampling case can be found in [2] (we refer
the reader to this reference for details). In this pa-
per we will only focus on the design of the trans-
formation function which is given by M (z1; z2; z3) �P
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0 for k1 + k2 + k3 = even

arbitrary for k1 + k2 + k3 = odd
The transformation function is related to a 3-D (TRO)
halfband �lter: HHB(z1; z2; z3) =

1
2(1 +M (z1; z2; z3)).

By deleting the coe�cient at the origin of a half-
band �lter impulse response, we obtain the transforma-
tion coe�cient, i.e. m(k1; k2; k3) = 2hHB(k1; k2; k3) �
�(k1; k2; k3). In this paper we will use the Bernstein
polynomial to design the halfband �lter which is sub-
sequently used to obtain the transformation function.
The 3-D Bernstein polynomial [7] is given by
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where
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i!(N�i)! and f(i; j; k) are the Bern-

stein coe�cients which de�nes the polynomial. The
domain of the function is the unit cube C: (x; y; z) 2
C � [0; 1]3. The coe�cients values are sampled val-
ues from an ideal function that the polynomial is try-
ing to approximate, i.e. f(i; j; k) = fI(i=N; j=N; k=N ).
The function fI(x; y; z) is de�ned over the continuous
valued support C. To obtain the z-transform transfer
function,H(z1; z2; z3), the followingmapping is applied
to B(x; y; z): x = �1

4z1(1�z
�1
1 )2, y = �1

4z2(1�z
�1
2 )2,

z = �1
4z3(1� z�13 )2.

If the Bernstein polynomial is to be used for half-
band �lter design, it must satisfy



B(x; y; z) + B(1� x; 1� y; 1� z) = 1: (2)

The condition on the Bernstein coe�cients are given
by the following theorem:
Theorem 1: The neccessary and su�cient condi-

tion for B(x; y; z) to satisfy the HB condition (2) is:

f(i; j; k) + f(N � i; N � j;N � k) = 1: (3)

Proof: To proof the su�cient part of the theorem, we
substitute (1) into the LHS of (2) which yields (after
some algebraic manipulation)

B(x; y; z) + B(1� x; 1� y; 1 � z)

=
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Using (3) and the binomial expansion identityPN

i=0 x
i(1�x)N�i = (x+1�x)N = 1, we have proven

that LHS = RHS for equation (2).
To proof the neccessary part of the theorem, we let
f(i; j; k)+f(N � i; N �j;N �k) = 1+p(i; j; k). Subti-
tuting (1) into (2) yields the following equation (after
simpli�cation):
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p(i; j; k)xi(1� x)N�i

yj (1� y)N�jzk(1� z)N�k = 0

This equation must be satis�ed for all (x; y; z) 2
C. The only way this is possible is for p(i; j; k) =
0 8 i; j; k. Hence (3) is neccessary. 2
The degree of atness of B(x; y; z) is the same at the

points (0; 0; 0) and (1; 1; 1) due to symmetry (see (2)).
The degree of atness determines the regularity of the
resulting wavelet �lters [2] and can be determined by
using the following theorem:
Theorem 2: Let S � 0 (integer). Consider the fol-

lowing constraint:

@p+q+rB
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(0; 0; 0) = 0 (4)

for all values of p,q and r that satisfy p+ q+ r � S and
p; q; r � 0. The neccessary condition for satisfying (4)
is:
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zf(0; 0; 0) = 0 for p+ q + r � S (5)

where �p
x is the pth forward �nite di�erence along the

x direction of f evaluated at (i; j; k) = (0; 0; 0). �q
y

and �r
z are the qth and rth di�erence along the y and

z directions respectively.

Proof: By applying Lemma 6.3.1 in [7] (pg. 112) to
each dimension of B(x; y; z) we have
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where C > 0 is a constant. The result follows immedi-
ately. 2

III. Bernstein Polynomial Approximation

Design

For the TRO subband the plane T � f(x; y; z) :
x + y + z = 3

2g separates the passband P and the
stopband S regions. T is the plane that partitions the
unit cube C into two equal halves (P and S) and it is
equidistant to the points (0; 0; 0) (zero frequency) and
(1; 1; 1) (aliasing frequency). A 3-D grid of discrete
points is constructed in C. Each linear dimension (in
the range [0,1]) is uniformly sampled into N +1 points
(see (1)). There are (N+1)3 discrete sampled points in
C. For our designs we shall choose the following ideal
function for approximation:

fI (x; y; z) =

8<
:

1 (x; y; z) 2 P
1
2 (x; y; z) 2 T
0 (x; y; z) 2 S

:

The derivation of the analytical expression will not be
presented here for lack of space. There are two cases
to consider:
1. When N = 2M + 1 (odd). This is the simpler sit-
uation. All the discrete points are either in P or S.
There are no points on T . The Bernstein coe�cients
f(i; j; k) values are either 1 or 0. The size of the result-
ing transformation function is 2N + 1 = 4M + 3. The
expression for the impulse response is

h2M+1(n1; n2; n3)
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2. When N = 2M (even). This is the more compli-
cated situation as some of the discrete points are on T .
Some of the Bernstein coe�cients f(i; j; k) values are
1
2 . The size of the resulting transformation function
is 2N + 1 = 4M + 1. The expression for the impulse
response is
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In both cases it can be veri�ed that condition (3) is
satis�ed. Both (7) and (8) are de�ned for n1; n2; n3 =
0; 1; : : : ; 2N . Note that the expressions obtained from
the Bernstein polynomial are non-causal zero-phase
functions (symmetrical about the origin), but the ex-
pressions above are the causal versions (a delay of
z�N1 z�N2 z�N3 is required). The function K is de�ned
as

K(n1; n2; n3; i; j; k) �
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The next theorem gives the degree of atness.

Theorem 3: The degree of atness of the �lters in
(7) and (8) is S = N .
Proof: By extending equation (21) from [3] to 3-D, we
have
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If f(i; j; k) = constant in the summation, then by using

the binomial identity
Pp

i=0(�1)
p�i

�
p
i

�
= (1�1)p =

0, it is easily veri�ed that (9) is zero. Now for the �lters
in (7) and (8), f(i; j; k) = 1 for (i; j; k) 2 PD, where
PD is the set of indices representing the discrete points
in P . The indices in PD can be obtained from the
summation indices in (7) and (8) (the third and �fth
sums in (8) which has the factor 1

2 is excluded). The
region P is bounded by the horizontal/vertical planes
x = 0; x = 1; y = 0; y = 1; z = 0; z = 1 and also by
the oblique plane T . The planes x = 1, y = 1 and
z = 1 (corresponding to i = N , j = N and k = N )
respectively limit the values of p, q and r to N (in
order for (9) to be zero). Hence by Theorem 2, (4) is
satis�ed for S = N . 2

IV. Design Examples

We shall consider slices of the 3-D frequency response
to give 2-D frequency response plots. The slices we
consider are across the plane !3 = constant. The shape
of the ideal 2-D slice is shown in Figure 2. Ideally the
transformation has values 1 and �1 in the passband
and stopband respectively.

Example 1: N = 4. Formula (8) gives a transforma-
tion of size 9� 9� 9. The frequency response is shown
in Figure 3.

Example 2: N = 7. Formula (7) gives a transforma-
tion of size 15 � 15 � 15. The frequency response is
shown in Figure 4.

The responses start o� with the value 1 in the pass-
band and eventually falls to the value �1 in the stop-
band as required by the speci�cation. As the size of the
transformation increases, both the sharpness of roll-o�
and the degree of atness increase. Finally, note that
with N = 3, formula (7) gives the transformation that
is exactly the same as the transformation in Example
6.1 in [2]. The results here; and the comparison made
with the result in [2] veri�es the formulas (7) and (8).

V. Conclusions

The multivariate Bernstein polynomial has provided
an easy and e�ective way of designing 3-D FCO/TRO
wavelet �lter banks. Closed form analytical expressions
were obtained for designing the transformation func-
tion of any size and no optimization is required. Good
approximation to the TRO subband shape is achieved.
Arbitrarily at frequency response is obtainable for giv-
ing regular Discrete Wavelet Transform systems.
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Fig. 1. Ideal passband with FCO sampling lattice: Truncated

Octahedron. Also shown is the unit frequency cell in 3D
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Fig. 3. 2D slices of the 3D frequency in Example 1: N = 4.
Transformation size is 9 � 9 � 9. Top: slice across !3 = 0.
Middle: !3 = �=2. Bottom: !3 = �.
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Fig. 2. Slice across the plane !3 = const. for the TRO. (i)
0 � j!3 j < �=2 and b = �=2� j!3 j. (ii) �=2 � j!3 j � �
and a = 3�=2� j!3 j.
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Fig. 4. 2D slices of the 3D frequency in Example 2: N = 7.
Transformation size is 15�15�15. Top: slice across !3 = 0.
Middle: !3 = �=2. Bottom: !3 = �.


