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ABSTRACT

The energy compaction performance of two-channel parau-
nitary finite impulse response (FIR) filter banks for finite-
length signals is investigated. A detailed non-iterative de-
sign procedure for boundary filters which are optimal in
a weighted mean square error (MSE) sense in the Fourier
domain is presented. Simulation results are given for two-
channel paraunitary FIR filter banks based on minimum-
phase Daubechies filters and least-asymmetric Daubechies
filters, respectively.

1. INTRODUCTION

The energy compaction performance is a rather general ob-
jective function for optimized design of signal decomposi-
tion algorithms [1]. It is well known that for two-channel
paraunitary filter banks coding gain and energy compaction
are equivalent [2].

Paraunitary FIR filter banks offer several desirable prop-
erties such as perfect reconstruction, energy conservation,
and equal-length analysis and synthesis filters [3]. Further-
more, factorizations based on cascaded degree-one building
blocks exist which are complete and minimal with respect
to both, the number of delays and the the number of param-
eters [3].

Paraunitary FIR filter banks are of particular interest for
signal-adapted filter bank trees with additive cost and dis-
tortion measures since the mean square quantization error
equals the mean square reconstruction error. The single-tree
algorithm which is essentially an adaptive wavelet packet al-
gorithm and the double-tree algorithm which is essentially
a spatially varying adaptive wavelet packet algorithm are
prime examples with applications in the field of image cod-
ing [4].

In general, filter bank designs are based on the assump-
tion of infinite-length signals. Therefore, finite-length sig-
nals, e.g., the rows and columns of an image or an image
segment, require special treatment of the signal boundaries.

Simple signal padding methods lead to distortion at the sig-
nal boundaries and introduce redundancy. Cyclic signal
extension suffers from artificially induced high frequency
components due to discontinuities at the signal boundaries.
Symmetric signal extension and linear phase filtering is not
compatible with two-channel paraunitary filter banks. It is
possible to drop the linear phase requirement but parauni-
tarity is not easily preserved [5].

Boundary filters avoid these drawbacks, i.e., they allow
for perfect reconstruction of finite-length signals without in-
troducing artificially high frequency components or redun-
dancy and they are compatible with two-channel parauni-
tary filter banks [6].

The scope of this paper is the investigation of the
energy compaction performance of paraunitary FIR filter
banks for finite-length signals. At first, a detailed non-
iterative design procedure for boundary filters which are
optimal in a weighted MSE sense in the Fourier domain
will be developed. Afterwards, an appropriate energy com-
paction measure will be derived. Simulation results will
be given for two-channel paraunitary FIR filter banks based
on minimum-phase Daubechies filters and least-asymmetric
Daubechies filters, respectively.

The following notation is used in the paper. Boldfaced
quantities denote matrices or column vectors. Row vectors
are denoted as transposed column vectors. The row and
column indices of matrices and vectors are counted from
zero. The quantitiesA0;A00 andAT denote the real part,
the imaginary part, and the transpose ofA, respectively.
ON�M denotes theN �M zero matrix andIN denotes
theN �N identity matrix.

2. BOUNDARY FILTERS

Let h0 = [h(N � 1); h(N � 2); :::; h(0)]T 2 RN denote
the reversed lowpass analysis filter impulse response vector
of a causal two-channel FIR paraunitary filter bank. Then,
the corresponding reversed highpass analysis filter impulse



response vector is given byh1 = [h(0);�h(1); :::;�h(N�
1)]T [7]. Noteh(N�1) 6= 0 andN even.h0 andh1 should
have unit Euclidean-norm, i.e.,hT0 h0 = h

T
1 h1 = 1. For the

construction of boundary filters it is convenient to define the
(N � 2)� (N � 2) triangular block matrices

A0 =

2
664
H0 H1 � � � HM�2

H0 � � � HM�3

� � �
H0

3
775 (1)

A1 =

2
664
HM�1

HM�2 HM�1

� � �
H1 H2 � � � HM�1

3
775 (2)

with M = N=2 and

Hm =

�
h(N � 1� 2m) h(N � 2� 2m)
h(2m) �h(2m+ 1)

�
: (3)

From [6] it is known that there exist exactlyM � 1 left
and right boundary filters each of maximal lengthN � 2.
Therefore, construction of a set of left boundary filters re-
quires determination of a real(M�1)�(N�2) matrixR0

such that the column vectors of[RT
0 A

T
0 ] are mutually or-

thogonal. Similarly, construction of a set of right boundary
filters requires determination of a real(M � 1) � (N � 2)
matrixR1 such that the column vectors of[AT

1 RT
1 ] are

mutually orthogonal. Canonical sets of boundary filters can
be derived using the following facts.

Proposition 2.1. Let aT0 ; :::;a
T
N�3 denote theN � 2

row vectors ofA1. Then theM � 1 row vectors
aT1 ;a

T
3 ; :::;a

T
N�3 are linearly independent and orthogonal

to the row space ofA0.

Proof: SinceA0A
T
1 = 0 holds [6], aT1 ;a

T
3 ; :::;a

T
N�3

are orthogonal to the row space ofA0. Because
of det(u0;N�2;a1;u2;N�2;a3; :::;uN�4;N�2;aN�3) =
(�h(N�1))M�1 6= 0whereun;N�2 denotes thenth unity-
vector of lengthN � 2, aT1 ;a

T
3 ; :::;a

T
N�3 are linearly inde-

pendent.

Proposition 2.2. Let bT0 ; :::; b
T
N�3 denote theN � 2 row

vectors ofA0. Then theM�1 row vectorsbT0 ; b
T
2 ; :::; b

T
N�4

are linearly independent and orthogonal to the row space of
A1.

Proof: Since A1A
T
0 = 0 holds [6], bT0 ; b

T
2 ; :::; b

T
N�4

are orthogonal to the row space ofA1. Because
of det(b0;u1;N�2; b2; :::; bN�4;uN�3;N�2) = h(N �

1)M�1 6= 0, bT0 ; b
T
2 ; :::; b

T
N�4 are linearly independent.

The boundary filter matricesR0 andR1 are now read-
ily obtained by Gram-Schmidt orthogonalization and sub-
sequent orthonormalization of the above sets of linearly in-
dependent vectorsaT1 ;a

T
3 ; :::;a

T
N�3 andbT0 ; b

T
2 ; :::; b

T
N�4,

respectively. WithrT1 ; r
T
3 ; :::; r

T
N�3 andrT0 ; r

T
2 ; :::; r

T
N�4

the obtained sets of orthonormal vectors, the boundary
filter matrices areRT

0 = [r1; r3; :::; rN�3] andRT
1 =

[r0; r2; :::; rN�4], respectively.
For optimization of the boundary filter matrices, a fact

already given in [6] will be restated.

Proposition 2.3. If R0 is a left boundary filter matrix then

B0 = QT
0 P 0 = QT

0

�
Ip0 0p0�(N�2)

0(M�1)�p0 R0

�
(4)

is also a left boundary matrix whereQ0 denotes an(M �
1+ p0)� (M � 1+ p0) orthogonal matrix. Similarly, ifR1

is a right boundary filter matrix then

B1 = QT
1 P 1 = QT

1

�
R1 0(M�1)�p1

0p1�(N�2) Ip1

�
(5)

is also a right boundary filter matrix whereQ1 denotes an
(M � 1 + p1)� (M � 1 + p1) orthogonal matrix.

Proof: It is readily verified thatB0B
T
0 = IM�1+p0 ,

B1B
T
1 = IM�1+p1 , B0 [0(N�2)�p0 A0]

T = 0, and
B1 [A1 0(N�2)�p1 ]

T = 0 hold.

Note that there areM � 1 + p0 left boundary filters
each of maximal lengthN � 2 + p0 andM � 1 + p1 right
boundary filters each of maximal lengthN � 2 + p1. The
objective function for optimization of the boundary filters
will be the weighted MSE between the frequency responses
of the boundary filters and the associated stationary filters.
If the numbers of boundary filtersM �1+p0 andM �1+
p1 are restricted to be even, the associated stationary filter
matrices are

Si =

2
4 H0 H1 � � � HM�1

� � �
H0 � � � HM�1

3
5 (6)

whereSi 2 R(M�1+pi )�(N�2); (i = 0; 1) holds. With the
Fourier matricesFK�L = [W kl] 0�k�K�1; 0�l�L�1; F =
FN�L; F i = F (M�1+pi)�L; W = exp(�j2�=L),
and the positive definite frequency weight matrixW =
diag(w0; :::; wL�1), the boundary filter optimization prob-
lems can be stated as

min
Q

i

kSiFW �QT
i P iF iW kF (7)

subject to the constraintQT
i Qi = IM�1+pi . It was already

noted in [8] that (7) is a slight modification of the orthogonal
Procrustes problem [9].



Proposition 2.4. GivenT i = T 0i + j T 00i 2 CK�L , an or-
thogonal matrixQ 2 RK�K which minimizes

kT 1 �Q
TT 2kF (8)

isQ = UV T whereU�V T is the singular value decom-
position (SVD) of

C1 = T
0
2T

0
1
T
+ T 002T

00
1
T
: (9)

Proof: With

C0 = T 01
T
T 01 + T

0
2
T
T 02 + T

00
1
T
T 001 + T 002

T
T 002 (10)

the objective function becomes

kT 1 �Q
TT 2k

2
F = tr(C0 � 2QTC1) : (11)

Therefore, minimization ofkT 1 � Q
TT 2kF is equivalent

to maximization oftr(QTC1). Because oftr(QTC1) =
tr(Z�) whereZ = V TQTU is an orthogonalK � K
matrix, the upper bound

tr(QTC1) =

K�1X
i=0

zii�i �

K�1X
i=0

�i (12)

can be readily derived. The upper bound is achieved by
settingZ = IK what is equivalent toQ = UV T.

The above proposition provides a non-iterative algo-
rithm for the computation of boundary filters which are op-
timal in the weighted MSE sense in the Fourier domain. The
optimal boundary filter matricesBi = QT

i P i are obtained
by settingT 1 = SiFW andT 2 = P iF iW , respectively.

Composition of anL0 � L0 orthogonal subband de-
composition matrixG which contains the non-overlapping
boundary filter matricesBi along with the smallest possi-
ble set of stationary filters reveals the minimal required sig-
nal lengthL0. With the decompositionsB0 = [B00 B01]
andB1 = [B11 B10], Bi0 2 R(M�1+pi )�pi , Bi1 2
R(M�1+pi )�(N�2), the smallest possible orthogonal matrix
is

G =

2
4 B00 B01

A0 A1

B11 B10

3
5 : (13)

Hence, the minimal required signal length isL0 = 2(N �
2) + p0 + p1. For signal lengthsL > L0, the associated
subband decomposition matrix can be readily obtained by
straightforward extension of the block matrix[A0 A1]. In
the sequel, it is assumed that the signal lengthL and the
numbers of left and right boundary filters are even. Then,
theL�L subband decomposition matrixG contains exactly
L=2 lowpass andL=2 highpass filter vectors which can be
rearranged to obtain theL=2� L lowpass filter matrixG0

and theL=2 � L highpass filter matrixG1, respectively.
Note thatG0G

T
0 = G1G

T
1 = IL=2 andG0G

T
1 = 0 hold.

3. ENERGY COMPACTION

In this section, an energy compaction measure for two-
channel paraunitary FIR filter banks for finite-length sig-
nals is derived. The input signal is assumed to be a zero-
mean wide-sense stationary (WSS) random vector process
with exponentially decaying covariance sequence, i.e., if
X = [X0; :::; XL�1]

T denotes the WSS random vector pro-
cess of lengthL, E(X) = 0 holds and the covariance ma-
trix of X is

CX = E(XXT) = [�jk�lj] 0�k;l�L�1 (14)

where� denotes the correlation coefficient. The WSS prop-
erty impliesj�j < 1. Note that the individual components
ofX are normalized to have unit variance.

With the above defined matricesG0 andG1, Y 0 =
G0X andY 1 = G1X denote the output random vector
processes of the two-channel paraunitary FIR filter bank.
Because ofE(Y i) = GiE(X) = 0, theY i are zero-mean
random vector processes. The covariance matrices are given
by

CY i
= E(Y iY

T
i ) = GiCXG

T
i : (15)

In general, theCY i
are not persymmetric, i.e,JCY i

J 6=
CY i

whereJ denotes theL=2�L=2 reversal matrix. Since
symmetric Toeplitz matrices are persymmetric, theY i are
not WSS. An energy compaction measure can be defined
based on the cumulated variances of the output random vec-
tor processesY i. With

J = J0 + J1 = tr(CY 0
) + tr(CY 1

) = L (16)

an energy compaction measure for two-channel paraunitary
FIR filter banks for finite-length signals is given by

� =
J0
J

=
1

L
tr(CY 0

) : (17)

Note that0 � � � 1 holds. For infinite-length signals, the
energy compaction measure becomes

�1 = lim
L!1

� =
1

2
hT0CXh0 (18)

whereh0 denotes the reversed lowpass analysis filter im-
pulse response vector of lengthN and whereCX denotes
theN � N covariance matrix of the WSS random vector
processX = [X0; :::; XN�1]

T.

4. SIMULATION RESULTS

The simulation results are based on Daubechies filters [10]
of lengthN = 4, N = 6, andN = 8, respectively.
Both, minimum-phase filters denoted byDm;M and least-
asymmetric filters denoted byDs;M were applied. Note that



M = N=2 is the number of zeros at! = � of the lowpass
filters frequency response. The boundary filters were com-
puted according to the method presented in section 2. The
numbers of left and right boundary filters were chosen to the
smallest possible even number, i.e., forN = 4 andN = 8,
p0 = p1 = 1 and forN = 6, p0 = p1 = 0, respectively.
The frequency weight matrix was chosen toW = I . Table
1 summarizes the numbers of boundary filtersM � 1 + pi,
the minimal required signal lengthsL0, and the energy com-
paction coefficients for infinite-length signals,�1. Figure 1
and Figure 2 show the simulation results for the correlation
coefficients� = 0:95 and� = 0:35, respectively.

Dm;M=Ds;M D2 D3 D4

M � 1 + pi 2 2 4
L0 6 8 14

�1(� = 0:95) 0.9808 0.9820 0.9825
�1(� = 0:35) 0.6942 0.7010 0.7043

Table 1: Numbers of boundary filtersM � 1 + pi, minimal
required signal lengthsL0, and energy compaction coeffi-
cients�1 for Daubechies filtersD2 �D4.

In both cases, the minimum-phase filtersDm;2 and
Dm;3 perform better than their least-asymmetric counter-
parts. For� = 0:95, Dm;3 is the best choice with respect
to energy compaction performance. For� = 0:35, the best
choice depends on the signal length. For short signals, i.e.,
L � 32, Dm;2 performs best whereas for medium signal
lengths, i.e.,32 < L � 128, Dm;3 should be used.Ds;4 is
predestined for long signals, i.e.,L > 128.
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Figure 1: Energy compaction coefficients� for Daubechies
filtersD2 �D4 and correlation coefficient� = 0:95.

10
0

10
1

10
2

10
3

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

Signal length  L

E
ne

rg
y 

co
m

pa
ct

io
n 

η

ρ=0.35

 D
m, 2

 D
s, 2

 D
m, 3

 D
s, 4

 D
s, 3

 D
m, 4

Figure 2: Energy compaction coefficients� for Daubechies
filtersD2 �D4 and correlation coefficient� = 0:35.
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