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ABSTRACT Simple signal padding methods lead to distortion at the sig-
nal boundaries and introduce redundancy. Cyclic signal
extension suffers from artificially induced high frequency

X S i . . . components due to discontinuities at the signal boundaries.
length signals is investigated. A detailed non-iterative de- Symmetric signal extension and linear phase filtering is not

leeiprﬁzzd%r:afnors bl?:rr;d:rrtyoplg\a/lr;g;’ hs'gzsaer?nOtﬁtemglu'r?ercompatible with two-channel paraunitary filter banks. It is
gn quar . . possible to drop the linear phase requirement but parauni-
domain is presented. Simulation results are given for two-__ . ;
. X - tarity is not easily preserved [5].
channel paraunitary FIR filter banks based on minimum-

phase Daubechies filters and least-asymmetric Daubechie?Or Bg#gg?&g':}iﬁui\{i%'g;?ﬁﬁﬁ:lr:r'btﬁzl?shgz 'V\t/ir;ﬁguatl::fv
filters, respectively. p gthsig

troducing artificially high frequency components or redun-
dancy and they are compatible with two-channel parauni-
1. INTRODUCTION tary filter banks [6].
The scope of this paper is the investigation of the

The energy compaction performance is a rather general obenergy compaction performance of paraunitary FIR filter
jective function for optimized design of signal decomposi- panks for finite-length signals. At first, a detailed non-
tion algorithms [1]. It is well known that for two-channel jterative design procedure for boundary filters which are
paraunitary filter banks coding gain and energy compactiongptimal in a weighted MSE sense in the Fourier domain
are equivalent [2]. will be developed. Afterwards, an appropriate energy com-

Paraunitary FIR filter banks offer several desirable prop- paction measure will be derived. Simulation results will
erties such as perfect reconstruction, energy conservationge given for two-channel paraunitary FIR filter banks based
and equal-length analysis and synthesis filters [3]. Further-on minimum-phase Daubechies filters and least-asymmetric
more, factorizations based on cascaded degree-one buildingaubechies filters, respectively.
blocks exist which are complete and minimal with respect  The following notation is used in the paper. Boldfaced
to both, the number of delays and the the number of param-guantities denote matrices or column vectors. Row vectors
eters [3]. are denoted as transposed column vectors. The row and

Paraunitary FIR filter banks are of particular interest for ¢olumn indices of matrices and vectors are counted from
signal-adapted filter bank trees with additive cost and dis- zero. The quantitiest’, A” and AT denote the real part,
tortion measures since the mean square quantization errofhe imaginary part, and the transpose 4f respectively.
equals the mean square reconstruction error. The single-tregy . . denotes theV x M zero matrix andl 5 denotes
algorithmwhich is essentially an adaptive wavelet packetal- the v x N identity matrix.
gorithm and the double-tree algorithm which is essentially
a spatially varying adaptive wavelet packet algorithm are
prime examples with applications in the field of image cod- 2. BOUNDARY FILTERS
ing [4].

In general, filter bank designs are based on the assumptet hy = [h(N — 1), A(N — 2),...,h(0)]* € RN denote
tion of infinite-length signals. Therefore, finite-length sig- the reversed lowpass analysis filter impulse response vector
nals, e.g., the rows and columns of an image or an imageof a causal two-channel FIR paraunitary filter bank. Then,
segment, require special treatment of the signal boundariesthe corresponding reversed highpass analysis filter impulse

The energy compaction performance of two-channel parau-
nitary finite impulse response (FIR) filter banks for finite-



response vector is given by = [h(0), —h(1), ..., —h(N—

1)]T [7]. Noteh(N —1) # 0 andN even.h, andh; should
have unit Euclidean-norm, i.éx; ho = hi hy = 1. Forthe
construction of boundary filters it is convenient to define the
(N — 2) x (N — 2) triangular block matrices

H, H, Hy_»
AO — HO .IL-I.M73 (1)
H,

Hy ]
141 — -[_:l—-M72 HMfl (2)

H, H, Hy |

with M/ = N/2 and

[ A(N—=1-2m) h(N —2-2m) ]

Hun =1 h2m) “h(2m + 1) (3)

From [6] it is known that there exist exacty — 1 left
and right boundary filters each of maximal length— 2.
Therefore, construction of a set of left boundary filters re-
quires determination of are@l/ — 1) x (N — 2) matrix Rg
such that the column vectors pR; A; | are mutually or-
thogonal. Similarly, construction of a set of right boundary
filters requires determination of a rdd@l/ — 1) x (N —2)
matrix R, such that the column vectors pA] R[] are

The boundary filter matriceR, and R; are now read-
ily obtained by Gram-Schmidt orthogonalization and sub-
sequent orthonormalization of the above sets of linearly in-
dependent vectos|, aj, ...,a% _; andb; , by , ..., bx_y,
respectively. Withrl, rY ... r§_; andrl,rd, .. 7k _,
the obtained sets of orthonormal vectors, the boundary
filter matrices areR; = [ry,rs,...,7n_3] and R}
[ro, T2, ..., "N —4], respectively.

For optimization of the boundary filter matrices, a fact
already given in [6] will be restated.

Proposition 2.3. If Ry is a left boundary filter matrix then

Ipo
0(M71)><p0

Opo X(N—?)

m:%m:%[ R

]w

is also a left boundary matrix whef@, denotes arfA/ —
1+po) X (M — 1+ po) orthogonal matrix. Similarly, if?,
is a right boundary filter matrix then

R,
Opl X (N—2)

O(m—1)xp:

Blzq?Ple?[ I
p1

| ®

is also a right boundary filter matrix whe€@, denotes an
(M —1+p1) x (M — 1+ p) orthogonal matrix.

Proof: It is readily verified thatBoBy = In 14p
BlBrlr = IM,1+p1, By [O(N—2)><po AO]T = 0, and
B, [Al 0(N—2)><p1]T =0 hold. O

Note that there ard/ — 1 + pg left boundary filters
each of maximal lengttv' — 2 + pop andM — 1 + p; right

mutually orthogonal. Canonical sets of boundary filters can poyndary filters each of maximal length — 2 + p;. The

be derived using the following facts.

Proposition 2.1. Let ad,...,a%_; denote theN — 2

row vectors of A;. Then theM — 1 row vectors
at,al,...,a} _, are linearly independent and orthogonal

to the row space of,.

Proof: Since AgAT 0 holds [6], aT,af,....ak_,
are orthogonal to the row space ody,. Because
of det(u07N_2, a1,U2 N—2,03,..., UN_4 N—2, aN_3) =
(—=h(N—=1))M~1 + 0 whereu,, n_» denotes theth unity-
vector of lengthV — 2, al,ad, ...,a} _; are linearly inde-
pendent. O

Proposition 2.2. Let by , ..., by,_, denote theN — 2 row
vectors ofA,. ThenthelM —1row vectorsh) , by ,...,bx_,

objective function for optimization of the boundary filters
will be the weighted MSE between the frequency responses
of the boundary filters and the associated stationary filters.
If the numbers of boundary filted® — 1+ po andM —1 +

py are restricted to be even, the associated stationary filter
matrices are

H, H, Hyry

S;

=1 .. (6)
H, Hy

whereS; € RM-1+p)x(N=2) " (; = ( 1) holds. With the
Fourier matriceF kw1, = [WHo<r<r—1,0<i<r-1, F =
Fnxr, Fi Fovr—1ipyxe, W exp(—j2m/L),
and the positive definite frequency weight mathik =
diag(wo, ..., wr,—1), the boundary filter optimization prob-

are linearly independent and orthogonal to the row space oflems can be stated as

A

Proof: Since A;A; = 0 holds [6], b;, b, ,...,bx_,
are orthogonal to the row space od;. Because
of det(bo,u1,n—2,b2, ... b4, un_3N—2) = h(N —

HM=1+£0,by,b,,...,bx_, are linearly independent.]]

ng?in”SiFW ~ Q! P;F;W|p )

subject to the constrainigiTQi = Ipr—14p,. Itwas already
noted in [8] that (7) is a slight modification of the orthogonal
Procrustes problem [9].



Proposition 2.4. GivenT; = T; + j T} € CK*L an or-
thogonal matrixQ € RX*X which minimizes

—Q'Ts|r (8)

isQ = UVT whereUX V7" is the singular value decom-
position (SVD) of

1T

Ci =TT, + 15T ©)
Proof: With
Co=T,"T\ + Ty Ty + T{" T} + T3 T (10)
the objective function becomes
IT1 = QTo|l7 = tx(Co —2QTCy).  (12)

Therefore, minimization of Ty — QTT2||F is equivalent
to maximization oftr(Q*C,). Because ofr(Q*C,) =
tr(ZX) whereZ = V'Q'U is an orthogonakk x K

matrix, the upper bound

tr(Q1C) =

Z ZlZO—Z S Z Ul

(12)

can be readily derived. The upper bound is achieved by

settingZ = I'x whatis equivalentt® = UV'T. O

3. ENERGY COMPACTION

In this section, an energy compaction measure for two-
channel paraunitary FIR filter banks for finite-length sig-
nals is derived. The input signal is assumed to be a zero-
mean wide-sense stationary (WSS) random vector process
with exponentially decaying covariance sequence, i.e., if

X = [Xo, ..., X1,_1]T denotes the WSS random vector pro-
cess of length, E(X) = 0 holds and the covariance ma-
trix of X is

Cx =E(XX7") = [p“”*ll]ogk,lgL—l (14)
wherep denotes the correlation coefficient. The WSS prop-
erty implies|p| < 1. Note that the individual components
of X are normalized to have unit variance.

With the above defined matricas, and G, Y, =
GoX andY; = G;X denote the output random vector
processes of the two-channel paraunitary FIR filter bank.
Because oE(Y;) = G;E(X) = 0, theY; are zero-mean
random vector processes. The covariance matrices are given

by

Cy, =E(Y,Y])=G,CxG} . (15)
In general, theC'y-, are not persymmetric, i.efCy ,J #

Cy, whereJ denotes thé /2 x L /2 reversal matrix. Since

The above proposition provides a non-iterative algo- symmetric Toeplitz matrices are persymmetric, ¥igare
rithm for the computation of boundary filters which are op- not WSS. An energy compaction measure can be defined
timal in the weighted MSE sense in the Fourier domain. The based on the cumulated variances of the output random vec-

optimal boundary filter matriceB; Q P; are obtained
by settingT’y = S; FW andT, = P;F;W, respectively.
Composition of anLy, x Lo orthogonal subband de-

composition matrixG' which contains the non-overlapping

boundary filter matriced; along with the smallest possi-

ble set of stationary filters reveals the minimal required sig-

nal lengthLy. With the decompositiony = [Boo Bo1]
and B, = [By; Byg), By € RM-14p)xpi B, ¢

RM-1+r:)x(N=2) the smallest possible orthogonal matrix

is
By Byo
G = Ay A
B

(13)
BlO

Hence, the minimal required signal lengthlis = 2(N —
2) + po + p1. For signal lengthd. > Lo, the associated

tor processe¥’ ;. With

J=Jo+ J1 = tI‘(CYO) + tI‘(CYl) =L (16)

an energy compaction measure for two-channel paraunitary
FIR filter banks for finite-length signals is given by
Jo 1
= 7 = ztr(CYO) -
Note thatd < n < 1 holds. For infinite-length signals, the
energy compaction measure becomes

17)

1
Noo = lim 5= — hOTCXhO (18)
L—oo 2

whereh, denotes the reversed lowpass analysis filter im-
pulse response vector of length and whereC' x denotes

subband decomposition matrix can be readily obtained bythe N x N covariance matrix of the WSS random vector

straightforward extension of the block matfid, A;]. In
the sequel, it is assumed that the signal lenftand the

numbers of left and right boundary filters are even. Then,

the L x L subband decomposition matii contains exactly

processX = [Xo, ..., Xy 1]T.

4. SIMULATION RESULTS

L/2 lowpass and./2 highpass filter vectors which can be The simulation results are based on Daubechies filters [10]

rearranged to obtain the/2 x L lowpass filter matribG|
and theL/2 x L highpass filter matrixG, respectively
Note thatGyGy = GG = I/, andGoG T = 0hold.

of lengthN = 4, N = 6, and N = 8, respectively.
Both, minimum-phase filters denoted B, 5, and least-
asymmetric filters denoted 0y, s were applied. Note that



M = N/2is the number of zeros at = = of the lowpass
filters frequency response. The boundary filters were com-
puted according to the method presented in section 2. The
numbers of left and right boundary filters were chosen to the
smallest possible even number, i.e., }r= 4 andN = 8,

po =p1 = landforN = 6, pp = p1 = 0, respectively.
The frequency weight matrix was choseriio = I. Table

1 summarizes the numbers of boundary filtéfs— 1 + p;,

the minimal required signal lengttis, and the energy com-
paction coefficients for infinite-length signalg,. Figure 1
and Figure 2 show the simulation results for the correlation
coefficientsp = 0.95 andp = 0.35, respectively.

Energy compaction n

0.71

0.691

o o o o
o) o o 1)
@ ) N ©
T T T
O_0
-3
N

o

o

a
T

o

o

[
T

| Dmm/Dsa | Dy | Ds | Dy |
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Moo (p = 0.95) | 0.9808| 0.9820| 0.9825

o(p = 0.35) | 0.6942] 0.7010| 0.7043

Table 1: Numbers of boundary filtefd — 1 + p;, minimal
required signal length&,, and energy compaction coeffi-
cientsn,, for Daubechies filter®, — Dj,.

In both cases, the minimum-phase filtefs, » and
D, s perform better than their least-asymmetric counter-
parts. Forp = 0.95, D,, 3 is the best choice with respect
to energy compaction performance. foe 0.35, the best
choice depends on the signal length. For short signals, i.e.
L < 32, Dy,» performs best whereas for medium signal
lengths, i.e.32 < L < 128, D,, 3 should be usedD; 4 is
predestined for long signals, i.d.,> 128.
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Figure 1: Energy compaction coefficiemt$or Daubechies
filters D, — D, and correlation coefficient = 0.95.
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Figure 2: Energy compaction coefficiemt$or Daubechies
filters D, — D4 and correlation coefficient = 0.35.
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