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ABSTRACT

The Range Focused Beamformer (RFB) and the Triple Aper-
ture Crosscorrelator (TAC) are the two primary wavefront cur-
vature ranging techniques used in fielded sonar systems. Theo-
retical performance bounds have been presented in the past for
both approaches. This paper develops unified array processing
performance bounds where the RFB and the TAC are special
cases. Specifically, general Cramer-Rao Lower Bounds (CRLB)
on range and bearing estimation for a linear array of directional
elements are developed, where the CRLB for the RFB and the
TAC are shown to be special cases of the general theory. The
ranging performance of the two techniques are then compared.

1. INTRODUCTION

Joint passive estimation of localization parameters (range and
bearing) using a long towed array is an ongoing problem of
considerable interest. When sources are close to the array, the
arriving acoustic wavefront cannot be assumed to be planar. In
general, in the near-field the wavefront is spherical, in the
Fresnel region the wavefront is cylindrical (quadric) and in the
Fraunhofer (far-field) region it is planar. For near-field ranging,
the Range-Focused Beamformer (RFB) and the Triple-Aperture
Array (TAC) are the two primary candidate system architectures
for fieldable systems (See Figures 1 and 2). Performance of the
range and bearing estimation process for each system can be
quantified by the Cramer-Rao Lower Bound (CRLB). Although
there are numerous papers in the literature devoted to the de-
velopment of analytical performance bounds for either archi-
tecture [1] - [6], the authors are unaware of any paper that pres-
ent a side-by-side analytical performance comparison for the
two systems. Such a side-by-side comparison will be presented
below.

2. GENERAL THEORY

2.1 Signal and Noise Models

In order to include both the RFB and the TAC architectures,
consider a linear array of M elements, where the elements
themselves can be beamformed subarrays. The output of the mth

element is given by
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Figure 1. Structure of a range focused beamformer
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Figure 2. Structure of a Triple Aperture Crosscorrelator

were the signal and noise components, s tm0 5  and n tm0 5  respec-
tively, are zero-mean real-valued uncorrelated Gaussian random
processes with unknown spectra S fs0 5  and S fn0 5 . The data is
linearly transformed by Fourier transforming the time series
over a coherent time block of T seconds resulting in a set of
random positive frequency components
~ , ~ , , ~x f x f x fm m m N1 21 6 1 6 1 6L . This set is described by a complex

jointly Gaussian distribution with negligible correlation be-
tween frequencies for sufficiently large time-bandwidth prod-
ucts.

Define the vector sets
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Define similar vector sets ~
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s fk1 6 , 
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that the signal wavefront crosses the mth element with a time
delay τ m  relative to a reference element, the signal component
at frequency fk  is given by

~s f S f em k k
j k m1 6 1 6= − ω τ (4)

where ω πk kf= 2 . Thus

~
r

r

s df S f fk k k1 6 1 6 1 6= (5)

with
r

Ld f e e ek
j j j T

k k k M1 6 = B≡ − − − −ω τ ω τ ω τ0 1 1, , , (6)

Two points must be made concerning the signal model. First, if
the array elements are beamformed subarray outputs, then the
beam chosen for each subarray is the beam containing the sig-
nal. It is also assumed that the signal is near the maximum re-
sponse axis of that beamformer channel, where the relative
signal gain is unity.

The second point concerns selection of the reference element. In
RFB, element zero is usually chosen as the reference, while
historically, the center element is chosen for the TAC. Mathe-
matically, it does not effect the performance bounds, so for con-
venience, the RFB convention will be chosen. Thus, τ m  is the
time delay relative to the 0th element and τ 0 0= .

The signal correlation matrix at frequency fk  is defined by
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Using Eqs. (4) and (5), this becomes
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where
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and, since the signal components are approximately uncorre-
lated across frequencies, the total signal correlation matrix is
block diagonal:
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T
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The noise component at frequency fk  is defined by

~n f q f N fm k m k k1 6 1 6 1 6= (11)

where q fm k1 6  is a noise weighting factor for the mth element.

This factor allows us to include the effective array gain for the
subarrays of the TAC and to take into account spatial noise
correlation.

The noise correlation matrix at frequency fk  is defined by
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and
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The total noise correlation matrix is block diagonal
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And the total signal plus noise correlation matrix is

Γ Γ Γ= +s n (16)

2.2 Cramer-Rao Lower Bounds

Let the parameter 
r

θ  denote the vector of parameters to be es-

timated, i.e. 
r
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signal and noise assumptions, the probability density function
that represents the likelihood of a given 
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p
H

NM

r

r

r r

x
x x

|
exp

θ
π4 9 2 7

=
− −Γ

Γ

1

(17)

For an unbiased estimator, 
r$θ , a lower bound on the variance of

the estimate is given by the Cramer-Rao Lower Bound

(CRLB)[7]. The CRLB for the components of  
r$θ  is
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where J r

θ
 is the Fisher Information Matrix (FIM) defined by
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The log-likelihood function is then given by
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Typically, a number of observation intervals are averaged dur-
ing the estimation process. Let the frequency variable fk  be-
come fk i, , where the index i refurs to the scan number. If the
data is statistically independent between observation intervals,
then the cumulative log-likelihood function is simply
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Thus, Eq. (19) can be rewritten as
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Noting that from Eq. (6), (8), (16) and (23),  Γ fk i,2 7depends
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The CRLB for the time delay estimation process are given by:
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3. SPECIAL CASES

3.1 Bounds on Time Delay Estimation

Assume that the noise is element-to-element independent.
Then,

q f q f w fm k i m k i m k i mm, , ,2 7 2 7 2 7′ ′≡ δ (31)

Using the Woodbury matrix inversion lemma to determine
Γ−1 fk i,2 7 , Eq. (27) yields
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Note that I  is a unit diagonal matrix of dimension
M M− × −1 10 5 0 5 .

For the RFB, each element is omnidirectional, hence
w fm k i,2 7 = 1 for all m. Thus, Eq. (32) yields
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To facilitate comparison of the RFB with the TAC, we set the
total number of hydrophones in both systems to M. For the
TAC, assume that the array consists of three plane wave beam-
formed subarrays with M / 4  elements in the two outer subar-
rays and M / 2  elements in the center subarray [2]. For this
case, w fm k i,2 7  is the inverse of the array noise gain for the mth

subarray at the subarray design frequency. Thus,
w f w f Mk i k i0 2 4, , /2 7 2 7= =  and w f Mk i1 2, /2 7 = , and Eq. (32)

becomes
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3.2 Bounds on Range and Bearing Estimation

If R is the range to the acoustic source measured from the array
center, β  is the angle measured clockwise from broadside, d is
the element spacing and c is the speed of sound in water, then
the relative time delay associated with the mth element can be
approximated to second order by
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where
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After some straightforward algebra, using Eqs. (26), (28), (37)
and (39), the elements of  Jr
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The CRLB is then obtained from Eq. (18). See [8] for similar
results for matched field processing.

For the TAC, R and β  are estimated by taking the terms for τ 1

and τ 2  only up to first order in Eq. (39) and inverting to obtain
R and β . This results in biased estimates, with the ignored
second-order term acting as the bias [6]. Using the CRLB for
biased estimators [6][7], the diagonal elements of Eq. (18) for
the TAC are given by
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where the elements of CRLB for time delay estimation are ob-
tained by inverting Eq. (38).

4. RANGING COMPARISON

Assume that the processed frequency band is the octave whose
upper band limit is the design frequency of the RFB array

f c ddes = / 21 6 . Also assume that both the signal and noise have

a constant spectrum over the band, and that the in-band signal-
to-noise ratio is -20 dB at the input to the hydrophones. For this
case, Figure 3 shows a comparison of the ranging performance
of both the RFB and the TAC in ranges relative to the reference
array length. The reference array length is taken as that of the
RFB array, LRFB . When the TAC is the same length as the RFB
(i.e. the outer subarrays of the TAC are adjacent to the inner
subarray), Figure 3 (a) shows that ranging errors for the TAC
are about a factor of 10 higher than those of the RFB. Figure 3
(b) shows that when the TAC array is twice as long as the RFB
array (i.e. the outer subarrays of the TAC are moved out so that
the total array length is twice that of the RFB), it’s performance
is  comparable to that of the RFB array.
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