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Abstract: In this work, we attempt to refine the methods based
on autoregressive (AR) modeling for speech enhancement [1,2].
As a matter of fact, AR modelling, which is a key strategy of the
methods reported in [1,2], is known to be good for representing
unvoiced speech but not quite appropriate for voiced speech
which is quite periodic in nature. Here, we incorporate a speech
model which satisfactorily describes voiced and unvoiced
speeches and silence (i.e., pauses between speech utterances)
into the enhancement framework developed in [1,2], and
specifically devise an algorithm for computing the optimal
estimate of the clean speech in the minimum-mean-square-error
sense. We also present the methods we use for estimating the
model parameters and give a description of the complete
enhancement procedure. Performance assessment based on
spectrogram plots, objective measures and informal subjective
listening tests all indicate that our method gives consistently
good results.

1. INTRODUCTION

Speech enhancement is a subject of both theoretical interest and
practical importance. As a matter of fact, the presence of noise
can result in appreciable degradation in the quality and
intelligibility of recorded speech. Consequently, not only can it
cause difficulty in interpreting and understanding the speech
message, but it can also lead to unsatisfactory results on
subjecting the noisy recorded speech to speech coding, speech
recognition, or speaker identification.

We have studied and implemented the speech enhancement
methods proposed in [1,2] and foresee that they can be further
improved. Indeed, the methods are developed based on AR
modelling, but it is known that AR model is not quite appropriate
for voiced speech which is often quite periodic in nature. In this
work, we incorporate a speech model which satisfactorily
describes voiced and unvoiced speeches and silence (i.e., pauses
between speech utterances) into the Kalman-filtering
enhancement framework developed in [1,2], and specifically
devise an algorithm for computing the optimal estimate of the
clean speech in the minimum-mean-square-error sense. As the
proposed algorithm requires a priori knowledge about the model
parameters, we estimate them from the noisy speech using an
iterative procedure which can be viewed as a form of
Expectation-Maximization (EM).

Performance assessment based on spectrogram plots, objective
measures and informal subjective listening tests show that our
method gives consistently good results. In particular, it gives
better performance than the classical spectral subtraction method
[3] and an AR-based method [1,2] (which is separately referred
to as the Kalman-filtering method in [1] and the scalar-Kalman-
filter method in [2]).

2. PROBLEM STATEMENT

Consider the following noisy speech model:

y(n) = s(n) + w(n), (M

where n=1,2, ..., and y(n), s(n) and w(n) denote discrete-
time samples of noisy speech, clean speech and noise
respectively. Basically, our objective is to devise a method for
obtaining an optimal (in the MMSE sense) estimate for each
sample of the clean speech, based on the past and current
samples, as well as future samples in a neighbourhood of the
noisy speech. In other words, we want to devise an algorithm for
computing §(n), the MMSE estimate of s(n), which can be

expressed as

A
$(m)=E(s(m)| y(n+1). ... y(n). ... y()) - @)

for n=1,2, ..., where 7 denotes the number of future samples
of the noisy speech to be used, and FE(*) denotes the expectation
operator.

To achieve the objective, one has to first specify the statistical
models for w(n), the noise, and s(n), the clean speech. In this
connection, our model assumptions on w(n) are the usual ones
as follows: 1) it is generated by a stationary zero-mean white
gaussian process with variance o, and 2) it is independent of
s(n). Our assumptions on s(n) are based on the speech model
that we shall propose in the next section.

3. THE PROPOSED SPEECH MODEL

Before introducing the proposed speech model, it is worthwhile
mentioning the speech model employed in [1] and [2], which has
influenced our work. In [1] and [2], speech is assumed to be
generated by an autoregressive (AR) process:

q

s(n) = Za(n,k)s(n—k)+e(n)> ®)

k=
where e(n), the excitation signal, is generated by a zero-mean
white gaussian process with variance o;(,,)z, a(n,k)’s are the
adaptive filter coefficients, ¢ is the filter order, and s(n) is the
output (clean) speech. Such an AR model is quite appropriate
for describing unvoiced speech. However, it is not appropriate
for describing voiced speech, since the excitation signal for
voiced speech is often quite periodic and not as random as white
gaussian noise.

Our aim is to propose a single model to describe both voiced and
unvoiced speeches as well as the silence. Since both voiced and
unvoiced speeches are characterised by their excitation signals,
our strategy is to appropriately model the excitation signals to
accommodate both voiced and unvoiced speeches. In this



connection, we propose the following model for the excitation
signals (in conjunction with the speech model given by (3)):

e(”) = b(}’l, pn) e(nfpu) + d(”) (4)
where d(n) is generated by a zero-mean white gaussian process
with variance o-d(,,)z, pn is the instantaneous pitch period and
b(n, p,) is a measure of the instantaneous periodicity. For the
next few paragraphs, we shall discuss how our proposed model
caters for both voiced and unvoiced speeches and silence as well.

To represent unvoiced speech which is by nature quite random,
b(n, p,) issetto 0 so that e(n) = d(n) and thus the excitation
signal e(n) is a white gaussian noise (with variance O'd(,,)z). (Note
that p, does not have any effect here and one can arbitrarily set
it to any value, say 0.) Since the excitation signal for unvoiced
speech can be well represented by a white gaussian noise, our
proposed model is quite appropriate for unvoiced speech.

On the other hand, to represent voiced speech which is quite
periodic, we set p, to be the pitch period of the voiced speech,
b(n, p,) closeto 1 and o-d(,,)z close to 0, so that e(n)~ e(n —
pn) and thus the excitation signal is quite periodic. If the voiced
speech is relatively less periodic, b(n, p,) will be assigned a
value closer to 0, and o;,(,,)z will be assigned a value
significantly larger than 0. Consequently, the periodicity will be
weakened.

To represent silence, both b(n, p,) and o-d(,,)z are setto 0 so
that e(n) = 0 and thus the excitation signal is a zero signal.
(Note that p, does not have any effect and can be set to 0.)
Consequently, the speech signal s(n) will eventually decay to 0.

In summary, we have proposed a single speech model, as
described by (3) and (4), which can appropriately describe the 3
different states of a speech signal, namely voiced speech,
unvoiced speech, and silence.

4. OPTIMAL ESTIMATION OF CLEAN SPEECH

Considering the speech model given by (3) and (4) and the
additive noise model given by (1), our objective is to obtain an
optimal estimate (in the MMSE sense) of the clean speech as
expressed in (2). Our approach is to utilize the Kalman filter to
obtain our desired estimate. In this connection, we first
reformulate the model equations (1), (3) and (4) to a specific
form facilitating the application of Kalman filter.

A. Reformulation of model equations

First, it can be easily shown that Equation (3) is equivalent to the
following state-space equation:

Sy = An Sn-1 + Fl €ns (5)
where s, = (s(n), ..., s(n —r+1))", r=max(q, 7+ 1), T, isan
(r x 1) vector given by (1,0, ..., 0)!, e,=e(n) and A, isan (r
X r) matrix given by

h(n,1 a(n, 0 0
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Second, to reformulate Equation (4) into state-space form, we
first note that (4) can be written as

e(n) = Iz b(n,Ye(n = 1)+d(n)- v
=1

where p is taken to be a constant equal to the maximum possible
pitch period of human speech, and b(n, /) =0 for all [ # p,,
where p, is the instantaneous pitch period. Subsequently, it can
be easily shown that (7), as thus also (4), is equivalent to the
following state-space equation

€, = Bn €1 + FZ dm (8)
where e, = (e(n), ..., e(n—p+ 1)), T, isa (p x 1) vector
given by (1,0, ...,0), d,=d(n) and B, isa (p x p) matrix
given by

[b(n1)  b(n.2) b(n, p)O
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Third, it can be shown that (5) and (8) can be combined into a
single state-space equation as follows:

Xp+l = Fn Xn + r} dn—Ha (10)
where x, = ( Sl e,,T)T, I isan ((r+ p) x 1) vector given
by ,....0,1,0,... O)T’ and F, is an (r+p)x(r+p) matrix

¥r

given by

T
F o=t iT2H (11)
oo Bn+1 u

Fourth, it can be easily shown that Equation (1) is equivalent to
the following state-space equation:

y(}’l) = l—‘4Txn+l + W(}’l), (12)
where T, isan ((r + p) x 1) vector given by (1, 0, ..., 0).
In summary, we have reformulated the model equations given by

(1), (3) and (4) into the equivalent state-space equations given by
(10) and (12).

B. The desired optimal estimate obtained with the Kalman filter

Now with the state-space equations given by (10) and (12)
(which are equivalent to (1), (3) and (4)), we are ready to apply
the Kalman filter. Subsequently, we obtain the following
algorithm for computing the output §(7). our desired optimal

estimate (in the MMSE sense) of clean speech:

1. Initialization:

a(0,1)=...=a(0,q)=s(0)=... =£v(17q)
=e(0) = ... = e(-p) = H(0) = Gy = O, (13)
PO = O(Hp)x(ﬁp)s 'QO = O(r+p)><1 . (14)
2. Recursion: For n=1,2, ...,
Qn = Fn—l Pn—l Fn—lr + O-d(n)2 r} FSTa (15 )
Gn = Qn l—‘4 (F4T Qn l—‘4 + O-w(n—l)2 )711 (16)

Pn = (I - Gn I“47-) Qna (17)



%, = Foak, + G-I/ F%, ). (18)
3. Output: Forn=1,2, ...,
§(n)=(0,...,0,1,0,...,0) % - 19)
S(n) 0,....0.1,0,.... )xn+r+1
N

T

5. OUR ENHANCEMENT METHOD

The proposed algorithm requires knowledge about the parameters
of the additive noise model given by (1) and those of the speech
model given by (3) and (4). For the additive noise model. the
only parameter is ©,% the variance of the stationary noise. A
commonly accepted estimate of o,> is the variance of those
segments of the noisy speech signals that contain only the noise.
For the speech model, there are 4 time-varying and 3 constant
parameters. The time-varying parameters are: 1) a(n,k)’s, the
adaptive filter coefficients, 2) p,’s, the instantaneous pitch
periods, 3) b(n, p,)’s, the instantaneous periodicities, and 4)
o;,(,,)z ’s, the (instantaneous) variances of the signal d(n)
appearing in (4). The constant parameters are: 1) z, the number
of future samples of the noisy speech to be used in the
formulation of the MMSE estimate given in (2), 2) ¢, the total
number of the filter coefficients a(n.k)’s for each n, and 3) p,
the maximum possible pitch period of human speech.

A. Estimation of Parameters

The time-varying parameters are estimated using an iterative
procedure (note that the clean speech will also be estimated in
the process). The procedure involves alternately estimating the
parameters based on the last version of the estimate for the clean
speech and estimating the clean speech (using the proposed
algorithm) based on the last version of the estimates for the
parameters, until a stage where the quality/intelligibility of the
estimate of the clean speech has reached a desired level. A
detailed description of the procedure will be reported in [4].

For the first iteration of the procedure, the time-varying
parameters are estimated based on y(n), the noisy speech, in the
following way. First, for each #, the estimates of a(n.k)’s for
k=1, ..., q, are basically obtained using the Durbin-Levinson
algorithm [5], using a “smoothed version™ of y(n) as input (see
[4] for further details). Second, each estimate of p, is obtained
using R(m), the autocorrelation function of the speech segment
in a neighbourhood (32 msec.) of the sample y(n), with 40%
center clipping [5]. Third, each b(n, p,) is estimated using the
ratio R(p,)/R(0). If the ratio is more than 0.5, the speech
segment is considered periodic and b(n, p,) is setto R(p,)/R(0).
Otherwise, b(n, p,) is set to 0. Fourth, each O'd(,,)z, the
(instantaneous) variance of d(n), is estimated in the following
manner. We first compute d(n) based on (3) and (4), and then
estimate each o-d(,,)z by the variance of the segment in a small
neighbourhood (8 msec.) of d(n). For subsequent iterations, the
procedure is similar (see [4] for further details).

The choice of the constant parameters are as follows (the
rationale of such choice will be reported in [4]): 7= 100, g = 10
(and so »=max(q, z+1)=101), and p =160.

B. Summary of our enhancement method

Given a noisy speech sampled at 8§ kHz, we first estimate the
parameter of the additive noise model according to the method
mentioned in the first paragraph of Section 5. Next, the constant

parameters of the speech model are chosen according to
Subsection 5-A. Subsequently, we use the iterative procedure
mentioned in Subsection 5-A to obtain estimates for the time-
varying parameters of the speech model and estimates for the
clean speech. Based on the experiments we conducted, we found
that at the 3™ or 4" iteration, the quality/intelligibility of the
enhanced speech (i.e., the estimate of the clean speech) usually
reaches an acceptable level.

6. PERFORMANCE ASSESSMENTS

The test signals we use are 20 (10 male and 10 female)
phonetically balanced speech sentences taken from the TIMIT
speech database. For performance assessment, we rely on
objective measure, in particular signal-to-noise ratio (SNR), and
also spectrogram plots and informal subjective listening tests.
Note that we also perform objective tests using segmental SNR,
the details of which will be reported in [4].

First, we compare at various iterations the enhanced speeches
obtained using the AR-based method (which is separately
referred to as Kalman-filtering method in 1] and scalar-Kalman-
filter method in [2]) with those obtained using our proposed
method. Table 1 tabulates the SNRs for the enhanced speeches
obtained with both methods at the 1% to 6™ iterations. It
indicates that our proposed method is consistently superior to the
AR-based method.

Iter.# SNR
Noisy speech =5 0 5 10
Enhanced speech; 1 -0.27 | 4.01 8.19 [ 1245
AR-based method 2 2.95 6.06 9.44 | 13.23
3 3.71 6.33 9.53 | 13.26
4 3.31 5.96 9.24 | 13.07
5 2.92 5.61 895 | 12.87
6 2.63 5.34 8.71 | 12.68

-0.10 | 4.38 8.76 | 13.09
3.55 7.07 | 10.62 | 14.29
4.94 7.86 | 11.01 | 14.45
4.81 7.64 | 10.74 | 14.20
4.42 7.23 | 10.36 | 13.89
4.04 6.85 | 10.07 | 13.64

Enhanced speech;
our proposed
method

NN W N -

Table 1. SNRs for the enhanced speeches obtained with the AR-
based method and our proposed method at various iterations.

Second, we make a comparison among the enhanced speeches
obtained with spectral subtraction [3], the AR-based method at
the 3™ iteration, and our proposed method at the 37 jteration.
Table 2, which tabulates the SNRs for the enhanced speeches
obtained with the 3 methods, shows that our proposed method is
consistently superior to the other two. Informal subjective
listening tests which we have conducted also yield similar
findings. In particular, undesirable “musical” noise can be heard
in the enhanced speech obtained with spectral subtraction, but
not those obtained with our proposed method. Moreover, the
enhanced speeches obtained with our proposed method
demonstrate clarity and naturalness whereas those obtained with
the AR-based method sound somewhat distorted and
occasionally muftled, especially for voiced speech.



SNR

Noisy speech -5 0 5 10

a) Enhanced speech;

spectral subtraction —0.86 ) 376 | 827 | 12.72

b) Enhanced speech; AR-

based method (3™ iter.) 3.71 6.33 9.53 13.26

¢) Enhanced speech; our

oroposed method (37 iter.) | 494 | 7:86 | 1101 | 14.45

Table 2. SNRs for the enhanced speeches obtained with a)
spectral subtraction, b) the AR-based method at the 3" iteration,
and ¢) our proposed method at the 3" iteration.

Next, we compare the spectrograms of the enhanced speeches
obtained with the 3 methods. Figure 1 shows the spectrograms
of: a) the (original) clean speech, b) the noisy speech, c) the
enhanced speech obtained with spectral subtraction, d) the
enhanced speech obtained with the AR-based method, and e¢) the
enhanced speech obtained with our proposed method. First, note
that both Fig. 1 (e) and Fig. 1 (d) appear much “cleaner” and
more similar to Fig. 1 (a) than Fig. 1(c). This indicates that our
proposed method and the AR-based method are superior to
spectral subtraction. Second, the voiced part of speech in Fig. 1
(e) appears “cleaner” than that in Fig. 1 (d). Third, there are
some parallel “stripes” in the clean speech (see Fig. 1(a)) that are
missing in the enhanced speeches obtained with spectral
subtraction and the AR-based method (see Fig. 1(c) and (d)).
This indicates that the speech harmonics which correspond to the
parallel “stripes” have been removed. On the other hand, many
of these missing parallel “stripes™ are present in the enhanced
speech obtained with our proposed method (see Figure 1(e)).

In summary, performance assessment based on objective
measure, spectrogram plots and informal listening all indicate
that our method is consistently good. In particular, it performs
better than the spectral subtraction and the AR-based method.
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Fig. 1(d) Enhanced speech obtained with the AR-based method
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Fig. 1(e) Enhanced speech obtained with our proposed method

7. SOME REMARKS

First, note that the proposed algorithm involves multiplications
of large matrices and is thus computationally expensive. In [4],
we will provide an alternative algorithm which is
computationally more efficient.

Second, note that the proposed algorithm is based on white-
gaussian-noise assumption. In practice, colored noise may be
encountered and so the proposed method is not directly
applicable. One way to deal with this problem is to model
colored noise by an AR process and integrate it into the state-
space equations. The proposed algorithm can then be adapted to
cater for colored noise.
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