
AN EMBEDDED DCT-BASED STILL IMAGE CODING ALGORITHM
David Nister and Charilaos Christopoulos

Ericsson Telecom AB.
HF/ETX/PN/XML, CLAB
126 25 Stockholm, Sweden

Email: {d.nister, ch.christopoulos}@clab.ericsson.se

ABSTRACT
In this paper, an embedded DCT-based image coding
algorithm is described. The decoder can cut the bitstream at
any point and therefore reconstruct an image at lower rate. The
quality of the reconstructed image at this lower rate would be
the same as if the image was coded directly at that rate. The
algorithm outperforms any other DCT-based coders published
in the literature, including the JPEG algorithm. Moreover, our
DCT-based embedded image coder gives results close to the
best wavelet-based coders. The algorithm is very useful in
various applications, like WWW, fast browsing of databases,
etc.

1. INTRODUCTION

Transform coding has been widely used in many practical
image/video compression systems. The basic idea behind using
a transformation is to make the task of compressing the image
after transformation easier than direct coding in the spatial
domain. The Discrete Cosine Transform (DCT) has been used
as the transformation in most of the coding standards as JPEG,
H261/H.263 and MPEG.

In recent years most of the research activities have shifted from
the DCT to the wavelet transform, especially after Shapiro
published his work on embedded zerotree wavelet (EZW)
image coding [7]. Although wavelets appear to be capable of
providing more flexible space-frequency solutions than the
DCT, it is pointed out that this is mainly because of the good
structuring and quantization of the data stream, and not
necessarily to the superiority of wavelet transform [1].

This paper presents a DCT-based image coding method, from
which the decoded images give better results over those from
JPEG and other DCT-based coders published in the literature.
In addition, an embedded bitstream is produced by the
encoder. The decoder can cut the bitstream at any point and
therefore reconstruct an image at a lower bitrate. The quality of
the reconstructed image at this lower rate would be the same as
if the image was coder directly at that rate. Near lossless
reconstruction of the image is possible (up to the accuracy of
the DCT coefficients).

The paper is organized as follows: Section 2 describes the
coding scheme. The framework of embedded coding and the
scanning of the coefficients is described in sections 3 and 4.
The coding of the coefficients with context based arithmetic
coding is described in section 5. Results and comparisons are
given in section 6 and in section 7 conclusions are drawn and
topics for further research are suggested.

2. THE CODING SCHEME
The basic scheme of our DCT-based coder is:

1. Partition the image into rectangular blocks.

2. Transform each block separately with the DCT. The
transformation produces a block of DCT coefficients.
Traditionally the blocks used are 8 x 8 in size, but any
block size of power of two. The reason to restrict the size
to a power of two is that fast algorithms exist for the
efficient computation of the DCT [5,8].

3. Quantize and transmit/store the DCT coefficients in a
progressive manner, so that the most important information
is transmitted first. This is done by successive quantization
where the coding residue is reduced step by step, as it will
be described in following paragraphs.

The receiver of the information can now reverse these steps.
The bitstream made is embedded and the decoder can cut the
bitstream at any point and generate an image that has the same
quality as if it was compressed directly at that bitrate.

3. FRAMEWORK OF EMBEDDED
CODING

A major objective in a progressive transmission scheme is to
select the most important information - which yields the largest
distortion reduction- to be transmitted first [6]. This means that

the coefficients ci j, with largest magnitudes should be

transmitted first because they have a largest content of
information. This also means that the information in the value

of ci j, can also be ranked according to its binary

representation, and the most significant bits should be
transmitted first [6].

The compression takes place mainly because after the
transformation most of the energy of the image is concentrated
in low frequency coefficients, and the rest of the coefficients
have very low values. This means that there are very many
zeroes in the most significant bit planes of the coefficients.
Until the first significant bit of a certain coefficient is found,
the probability of zero is very high. The task of efficient
encoding therefore becomes the task of encoding these zeroes
in an efficient way.

For each coefficient, we call its first non-zero bit (starting from
most significant to less significant bits) as the First significant
bit (FSB). The bits of a coefficient prior to the first significant
bit will be referred to as the Zero bits (ZBs). The sign
information is represented by the Sign bit (SB), while the rest
of the bits after the first significant bit are called Raw bits
(RBs). This definitions are similar to the ones used in [3].

Coding is done bitplane by bitplane. In each bitplane, the
coding is from the lowest frequency coefficient to the highest
frequency.

The coding algorithm is as follows:

1. Find the mean value (DC_mean) of all DC coefficients.
Subtract this value from each DC coefficient.

2. Choose a quantizer that is half the size of the largest
magnitude coefficient in the image. Transmit this
quantizer.

3. Send/encode the information of which new coefficients are
significant with respect to the current quantizer and also
the sign of these coefficients. A coefficient is said to be
significant with respect to a quantizer if its magnitude is
larger than the current quantizer (in absolute terms).

4. Subtract the current quantizer (curr_quant) from the
magnitude of the coefficients found to be significant in this
bit plane. Replace the significant coefficients magnitude
cij by cij = cij - curr_quant. The difference corresponds to
keeping only the raw bits.

5. For all coefficients that have been significant in previous
bit planes, send/encode the information of whether the
coefficients have a larger or smaller magnitude than the
quantizer. Subtract the quantizer from the magnitude of the
ones that do and replace those coefficients by the resulting
value. This corresponds to transmitting a raw bit.

6. Divide the current quantizer by two. This corresponds to
going down to a less significant bit plane of the
coefficients.

7. Repeat from step 3 until the bit budget is exhausted or
some desired quality is reached.

Notice that step 1 above is optional. If it used, the mean value
of the DC coefficients has to be stored/transmitted. The
reconstruction is done as follows:

1. Set all coefficients to zero.

2. Receive the first quantizer (curr_quant).

3. Receive the information about the new significant
coefficients.

4. Reconstruct these as (1.5 * curr_quant * the coefficient
sign) . This is because at this stage we know that the
coefficient’s magnitude is between curr_quant and (2 *
curr_quant). This puts (1.5 * curr_quant) in the middle of
the uncertainty interval. The addition or subtraction
performed in step 5 below will update the coefficients so
that they are always in the middle of the uncertainty
interval.

5. For all previously significant coefficients, check if the
coefficients have a larger magnitude than curr_quant. Add
curr_quant/2 to the magnitude of the ones that do and
subtract curr_quant/2 from the magnitude from the ones
that don't.

6. Divide the curr_quant by two

7. Repeat from step 3 until the desired quality is reached or
no more information exists.

If step (1) had been performed at the encoder, then the decoder
has also received the mean value of the DC coefficients and
this value is added to the reconstructed DC coefficients.

4. SCANNING ORDER OF THE
COEFFICIENTS

For updating the coefficients in every bit plane a scan order
needs to be defined. One coefficient is updated in all blocks
before proceeding to the next coefficient.

Inside a block, the DCT coefficients are scanned in a diagonal
order, bit plane by bit plane, as seen in figure 1. After each
scanned diagonal, a flag is sent telling if there are any new
significant coefficients in the rest of the block. This is similar
to the JPEG EOB symbol and will be referred to as the block
cut_off. The block cut_off is used because in the first bit
planes there are so many zeroes that in practice an explicit
symbol performs better than trying to code all the zeroes with a
good prediction. The block cut off symbols only concern the
new significant coefficients.

Diagonal scan of DCT-coefficients

= Block cut off flag

Figure 1 Scanning of coefficients in each block

As explained before a sign bit has already been sent for the
previously significant coefficients. The uncertainty interval is
therefore twice as big for the coefficients not yet significant
and these should be considered first in the new scan.
Therefore, the coding of each bitplane, first we encode the
significance identification and then the refinement quantization
(steps 3 and 5 of the encoding process).

During the coding of each bit plane, the scanning of the
coefficients is done in the following manner: first all DC
coefficients, then all AC coefficients with the same index, in
the diagonal manner. The zig-zag scanning used in JPEG could
also be used without affecting the property of the embedded
coding that the algorithm has.

5. ARITHMETIC CODING CONTEXT

After the correct scan order has been chosen, it remains to
code the scan in an efficient way. The issue is mainly how to
encode the mask of the new significant coefficients. Many
approaches could be taken. Zero tree coding [6,7,9], run length
encoding, address switching [1]. The results presented here
were achieved with context-based arithmetic coding. Context
coding has also been used to code bi-level images in standards
such as JBIG and also in wavelet encoders [3]. An arithmetic
coder implemented according to the guidelines provided in
[10] was implemented. The adaptive probability estimation

was expanded and customized for bit plane coding as
described below.

Since the symbol alphabet used is binary, all that needs to be
estimated for each symbol, is the probability of that symbol
being zero. Without contexts, or with only one context, the
probability of a zero is estimated as the number of zeroes seen
so far, divided by the total number of symbols coded. Using
contexts, a number of surrounding or preceding symbols are
used to choose one out of several contexts. The contexts are
chosen so that the symbols coded in the same context are
expected to have similar statistics. In the case of binary
symbols, every context holds the number of zeroes and the
total number of symbols seen in this context. The probability
of zero is then estimated as the number of zeroes divided by
the total number of symbols. When the symbol is coded the
context is updated.

Several ways of choosing the context for the symbols have
been tried. Also different ways of updating the contexts. It
turned out that the best approach was to restart the contexts for
every new bit plane. This is due to the fact that different bit
planes have different statistics and that statistics inside a bit
plane is stationary enough.

5.1 Choosing the context

The bits used for the estimation of a symbol that is to be
encoded are put together and considered to form an integer
number. This number is used to index a context. The indexed
context holds all previous statistics seen when the bits used for
the estimation had this exact configuration.

In the following, the information of whether a coefficient is
significant or not, is considered to be a bit plane of its own,
called the significance plane. This bit plane is ‘1’ if the
coefficient in question has been found to be significant in the
current bit plane or any previous bitplane.

For the raw bits of all coefficients only one context was used.
This is only slightly better than sending the bits raw without
entropy coding. This is also true for the AC coefficients sign
bits and these were also encoded using only one context.

The DC sign bit is coded in a context chosen by adding
together the number of DC neighbors that are marked in the
significance plane and have a positive sign. The AC
coefficients zero bits (and significant bit) are coded taking into
account 6 neighboring coefficients in the block and the same
coefficient in three neighboring blocks (see figure 2). The
information in the significance plane for these coefficients, is
used for the context.

For the DC coefficient zero bits the context is chosen using the
DC coefficients in all the neighboring blocks (see figure 3).
Also in this case the only thing considered is the significance
plane.

The block cut_off is coded in the context of the cut_off
symbols in 4 neighboring blocks (see figure 4). The diagonal
number is also taken into account. This is done by using the
four bits of the related cut off symbols and the diagonal, which
is a 4 bit number and compose them into an 8 bit integer that
indexes the context.

=Estimated
bit

=Used for
estimation

Figure 2 Choosing the context for the AC coefficients
zero bits

=Estimated
bit

=Used for
estimation

Figure 3 Choosing the context for the DC coefficients
zero bits

=Estimated
bit

=Used for
estimation

Figure 4 Choosing the context for the block cut_off

6. RESULTS AND COMPARISONS

Results for some of the tests images of JPEG 2000 are shown
in figures 5 and 6. The block size used in our embedded DCT
is 8x8 and 16x16. The results are also compared with JPEG as
well as with a state of the art wavelet coder [6] and the
embedded DCT algorithm of [9]. Notice that as in the case of
our proposed algorithm, the algorithms in [6,9] produce an
embedded bitstream. Notice that JPEG could not compress the
images at all bit rates required. The number in brackets in

JPEG results show the actual compression ratio achieved with
JPEG (the publicly available ISG JPEG software was used,
without any optimizations). A trial and error procedure was
tried in order to achieve the desired compression ratios with
JPEG.

The results are presented in terms of Root Mean Square Error
(RMSE). The RMSE as a measure of image quality is not ideal
since it generally does not correlate well with the perceived
image quality. Nevertheless, it is commonly used in the
evaluation of compression techniques and it does provide some
measure of relative performance. Clearly, as shown from the
results below, the proposed algorithm outperforms JPEG
significantly, especially at high compression ratios. It also
gives better results compared to the embedded DCT algorithm
of [9], which is based on zero-tree coding (the source code of
the algorithm in [9] can be found in
http://www.ee.princeton.edu/~zx/articles.html). Clearly, the
performance of the proposed algorithm is very close to the
performance of the state of the art wavelet coder [6] (the code
for the algorithm in [6] can be found in
http://ipl.rpi.edu/SPIHT).

Cr JPEG [9] [6] Prop.

EDCT

(8x8)

Prop.

EDCT

(16x16)

128:1 - 19.48 15.83 18.01 16.39

64:1 35.54

(Cr=72:1)

13.75 11.65 13.29 12.10

32:1 10.96 9.08 8.21 8.92 8.33

16:1 6.40 5.72 5.30 5.57 5.37

8:1 4.11 3.45 3.18 3.36 3.38

Figure 5 RMSE results for the image ‘hotel’ (Cr=
compression ratio, Prop.= proposed)

Cr JPEG [9] [6] Prop.

EDCT

(8x8)

Prop.

EDCT

(16x16)

128:1 - 18.67 14.96 17.22 16.43

64:1 18.17

(Cr=57:1)

14.22 12.04 13.90 12.83

32:1 11.71

(Cr=29:1)

10.75 9.59 10.76 10.01

16:1 8.88 8.08 7.53 8.09 7.63

8:1 6.55 5.74 5.50 5.79 5.55

Figure 6 RMSE results for the image ‘aerial2’ (Cr=
compression ratio, Prop.= proposed)

A comparison of the 8x8 and 16x16 DCT shows that there is a
small improvement by the use of larger blocksize. This
however might not justify the complexity of the 16x16 DCT
approach. Notice that the results can improve significantly
with the use of postfilters, as has been demonstrated in [4]. In
this case, the results obtained are indistiguisable from the
results obtained with the wavelet coders [4].

7. CONCLUSIONS AND FURTHER
RESEARCH

This paper presented a low-complexity DCT-based embedded
image coder that is better than JPEG and the other DCT-based
coders and its performance is close to the state of the art
wavelet coders. More important, we showed that by clever
quantizer design, DCT is capable of delivering much better
performance than JPEG, close to the performance of wavelets.
Therefore, the proposed algorithm allows an elegant
mechanism for backwards compatibility with current JPEG
while it provides state of the art performance. Future research
would be in embedded color image coding and using the ideas
for coding of moving images.

8. REFERENCES
[1] N. K. Laurance and D. M. Monro, “Embedded DCT

coding with significance masking”, Proc. IEEE ICASSP
97, Vol. IV, pp. 2717-2720, 1997.

[2] J. Li, J. Li, C.-C. Jay Kuo, “Layered DCT still image
compression”, IEEE Trans. On Circuits and Systems for
Video Technology, Vol. 7, No. 2, April 1997, pp. 440-
442

[3] K. Nguyen-Phi and H. Weinrichter, “DWT image
compression using Contextual bitplane coding of wavelet
coefficients”, Proc. ICASSP 97, pp. 2969-2971, 1997.

[4] D. Nister and C. Christopoulos, “An embedded DCT-
based still image coding algorithm”, ISO/IEC
JTC1/SC29/WG1 N610, November 10-14, Sydney,
Australia , 1997 (submitted).

[5] W. B. Pennebaker, and J. L. Mitchell, JPEG Still image
data compression standard, Van Nostrand Reinhold, New
York, 1993.

[6] A. Said and W. A. Pearlman, “A new, fast and efficient
image codec based on set partitioning in hierarchical
trees”, IEEE Trans. on Circuits and Systems for Video
Technology, Vol. 6, No. 3, pp. 243-250, June 1996.

[7] J. M. Shapiro, “Embedded Image Coding using zerotrees
of wavelet coefficients”, IEEE Trans. on Signal
Processing, Vol. 41, No. 12, pp. 3445-3462, Dec. 1993.

[8] A. N. Skodras, “Fast Discrete Cosine Transform
pruning”, IEEE Trans. On Signal Processing, Vol. 42,
No. 7, pp. 1833-1837, July 1994.

[9] Z. Xiong, O. Guleryuz, M.T. Orchard, “A DCT-based
embedded image coder”, IEEE Signal Processing Letters,
Vol. 3, No. 11, pp. 289-290, Nov. 1996.

[10] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic
coding for data compression”, Communications of the
ACM, Vol. 30, No. 6, pp. 520-540, June 1987.

