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ABSTRACT

A computationally e�cient method for structured covari-
ance matrix estimation is presented. The proposed method
provides an Asymptotic (for large samples) Maximum Like-
lihood estimate of a structured covariance matrix and is
referred to as AML. A closed-form formula for estimat-
ing Hermitian Toeplitz covariance matrices is derived which
makes AML computationally much simpler than most exist-
ing Hermitian Toeplitz matrix estimation algorithms. The
AML covariance matrix estimator can be used in a variety
of applications. We focus on array processing herein and
show that AML enhances the performance of angle estima-
tion algorithms, such as MUSIC, by making them attain the
corresponding Cram�er-Rao bound (CRB) for uncorrelated
signals.

1. INTRODUCTION

The covariance matrix of a stationary signal is Hermitian
and Toeplitz. However, the conventional sample covariance
matrix obtained from a �nite number of observations sel-
dom has this structure. Estimating structured covariance
matrices is of particular interest in a variety of applications
including array processing and time series analysis. An im-
portant technique for structured covariance matrix estima-
tion is the maximum likelihood (ML) approach [1, 2, 3]
(and the references therein). Since, for Hermitian Toeplitz
matrices, a closed-form solution to the exact ML estima-
tion problem does not exist [2], the ML methods presented
in the previous studies are iterative and computationally
involved, and they are not guaranteed to yield the global
optimal solution. To avoid this di�culty, suboptimal meth-
ods have been considered, a notable example being the it-
erated Toeplitz approximation method (ITAM) [4]. How-
ever, in spite of the fact that the ITAM estimator produces
a covariance matrix estimate that is in general closer to
the true matrix than the sample covariance matrix in the
Frobenius norm sense, there is no guarantee that better
application-related performances, such as angle estimation
in array processing, will result. In fact, using the ITAM
covariance matrix estimate with MUSIC [5] (referred to as
ITAM-MUSIC) provides inconsistent (for high SNR) angle
estimates (see Section 4 for details).
In this paper we present a computationally e�cient

method for structured covariance matrix estimation. The
method provides an Asymptotic (for large samples) Maxi-
mum Likelihood estimate of a structured covariance matrix
and will be referred to as the AML algorithm. AML makes

use of the extended invariance principle (EXIP) for param-
eter estimation which was introduced in [6]. A closed-form
formula is obtained for Hermitian Toeplitz matrix estima-
tion by the AML approach. To assess the performance of
the proposed technique, we investigate the impact of us-
ing the AML covariance matrix estimate on angle estima-
tion. In particular, we obtain the angle estimates by using
MUSIC with the AML covariance matrix estimate and the
approach is referred to as AML-MUSIC. By exploiting the
Toeplitz structure of the covariance matrix in angle esti-
mation, we implicitly assume the a priori knowledge that
the incident signals are uncorrelated. With this additional
knowledge, the corresponding Cram�er-Rao bound (CRB),
referred to as the structured CRB or S-CRB, should be
lower than the CRB without this knowledge, which is re-
ferred to as the unstructured CRB or U-CRB. AML-MUSIC
is shown to (asymptotically) attain the S-CRB whereas, as
is well-known, using MUSIC with the unstructured sample
covariance matrix (referred to as the standard MUSIC) can
at best approach the U-CRB.

2. PROBLEM FORMULATION

Assume that y(n) 2 CM�1; n = 1; 2; : : : ;N , denote N inde-
pendent samples of a circularly symmetric complex Gaus-
sian stationary random process with zero-mean and Her-
mitian Toeplitz covariance matrix R(�) that is a known
function of an unknown parameter vector �, where � 2
R(2M�1)�1 consists of the real and imaginary parts of the
�rst column or row of R. The problem of interest herein is
to determine a Hermitian Toeplitz matrix estimate R(�̂) of
R(�) from fy(n)g.
The previous situation occurs in many applications in-

cluding array processing, in which fy(n)gNn=1 denote the
array output vectors when (i) the incoming signals are un-
correlated and (ii) a uniform linear array (ULA) is employed
[5]. Let K uncorrelated signals impinge on a ULA ofM sen-
sors, and assume that the additive noise is spatially white
and independent of the signals. Then the spatial covariance
matrix has the form [5]:

R(�) = A(�)SAH(�) + �2IM ; (1)

where A 2 CM�K is the Vandermonde array manifold ma-
trix, � 2 RK�1 denotes the vector consisting of the arrival
angles, S 2 RK�K denotes the diagonal signal covariance
matrix, (�)H denotes the conjugate transpose, �2 denotes
the noise variance, and IM denotes the M � M identity



matrix. The exact ML estimate �̂ of � is obtained by max-
imizing the likelihood function, which is equivalent to

�̂ = arg min
�2D�

L�(�); (2)

where D� = R(2M�1)�1, and

L�(�) = ln jR(�)j+ tr
�
R
�1(�) ~R

�
; (3)

with j � j denoting the determinant, tr(�) denoting the trace
and ~R being the sample covariance matrix:

~R =
1

N

NX
n=1

y(n)yH(n): (4)

If we impose on R no structure except for Hermitian sym-
metry, then it is known that the ML estimate of R is given
by ~R [1]; whereas if we observe the structure of R implied
by the parameterization of R(�), the ML estimate of R is

given by R(�̂). However, solving for the ML solution from
(2) turns out to be very complicated because of the non-
linearity of the cost function. This limits the interest in
using the exact ML structured covariance matrix estimate
in practical applications.

3. DERIVATION OF THE AML ESTIMATOR

Let r = vec(R) 2 CM
2�1, where vec(�) denotes the oper-

ation of stacking the columns of a matrix on top of one

another, and let 
 2 RM2�1 denote the vector which is
made from the real and imaginary parts of the elements of
R above and on the main diagonal. Evidently there is an
M2 �M2 matrix F such that 
 = Fr. Furthermore, since
the mapping from r to 
 is one-to-one, F must be nonsin-
gular. By invoking EXIP, we have the following result.

Theorem 1 Let ~
 = Fvec( ~R). Then

~� = arg min
�2D�

[~
 � 
(�)]T ��1 [~
 � 
(�)] (5)

is an asymptotically (in N) valid approximation of the ML

estimate �̂, where � = cov(~
) or equivalently a consistent
(in N) estimate of the covariance matrix of ~
.

Proof: See [6].
Let ~r = vec( ~R). Using the facts that ~
 = F~r and � =
FCFH, where C = cov(~r), we can readily check that (5) is
equivalent to

~� = arg min
�2D�

[~r� r(�)]H C�1 [~r� r(�)] : (6)

It turns out to be more convenient to work with (6) than
with (5), since we thus avoid the transformation from ~r to ~
.
An expression for C, needed in (6), is obtained as follows.
Let rm denote the m-th column of R and let ~rm denote the
m-th column of ~R. We have E f~rmg = rm, and

E
�
~rm1

~rHm2

	
= rm1

r
H
m2

+Rm2m1
R=N; (7)

where (�)� denotes the complex conjugate and Rm2m1
de-

notes the m2m1-th element of R. Hence

C
4
= E

�
(~r� r)(~r� r)H

	
= (RT 
R)=N; (8)

where 
 denotes the matrix Kronecker product. Using the
natural and consistent (in N) estimate ~C = ( ~RT 
 ~R)=N
for C in (6) leads to

~� = arg min
�2D�

[~r� r(�)]H ( ~R�T 
 ~R�1) [~r� r(�)] : (9)

Consider next the function r(�) for the case that R(�) is
Hermitian Toeplitz. Let

Qm =

�
0M�m;m IM�m
0m;M�m 0m;m

�
; m = 1; 2; : : : ;M�1; (10)

where 0r;s denotes the r � s matrix with zero elements.
Then

R
4
=

2
6664
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= �0IM +

M�1X
m=1

(�mQm + ��mQ
T
m): (11)

Let

� =
�
vec(IM) vec(Q1) vec(QT

1 ) : : :

vec(QM�1) vec(QT
M�1)

�
; (12)

and

� =
�
�0 �1 ��1 : : : �M�1 ��M�1

�T
: (13)

It follows from (11) that

r(�) = �� = �

2
666666664

1
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�
4
= 	�;

(14)
where 	 = �
, and

� = [ �0 Re(�1) Im(�1) : : : Re(�M�1) Im(�M�1) ]
T : (15)

Using (14) in (9) and minimizing the so-obtained quadratic
function yields the following (asymptotic) ML estimate of
�:

~� =
�
Re

�
	
H ~C�1	

���1 �
Re

�
	
H ~C�1~r

��
: (16)



To see this, let �r = ~C�1=2~r, and �	 = ~C�1=2 ~	, where ~C�1=2

denotes the Hermitian square root of ~C. Then

[~r � r(�)]H ~C�1[~r� r(�)] = kr� �	�k2

= �T �	
H �	� � �T �	

H
�r� �rH �	�+ �rH�r

= �T [Re( �	
H �	)]�� 2�TRe( �	

H�r) + �rH�r: (17)

Equation (16) immediately follows from (17). Next we note
that the Re(�) in (16) can be dropped since both 	H ~C�1	
and 	H ~C�1~r can be shown to be real-valued due to the
special structure of	. With this observation, we obtain the
�nal formula of AML for estimating a Hermitian Toeplitz
covariance matrix:

~� =
�
	
H ~C�1	

��1 �
	
H ~C�1~r

�
: (18)

The sparse structures of � and 
 should of course be ex-
ploited for the AML implementation. For example, we can
�rst compute ~C�1~r and ~C�1� as follows:

~C�1~r = (~R�T 
 ~R�1)vec( ~R) = vec( ~R�1); (19)

and

~C�1� =
�
vec( ~R�1IM ~R�1) vec( ~R�1Q1 ~R�1)

vec[( ~R�1Q1
~R�1)H ] : : : vec( ~R�1QM�1

~R�1)

vec[( ~R�1QM�1 ~R
�1)H]

�
: (20)

Then calculating either 	H ~C�1	 = 
H�T ~C�1�
 or
	H ~C�1~r = 
H�T ~C�1~r requires only a few additions.
Remark 1: If we relax the Gaussian assumption, then

the estimate given in (2) is no longer the ML estimate. In
such a case, it seems that the use of the \covariance match-
ing" criterion (6) (or (5)) makes more sense than using (2).

Remark 2: R(~�) as given by (18) is not guaranteed to be
positive semide�nite. However, this may occur only if R is
close to singular and N is relatively small. If N � 1, then
by the consistency of ~�, the matrix R(~�) must be positive
semide�nite. Our experimental experience suggests that for
a number of data samples as small as, for example, N = 15,
the estimated covariance matrix is always observed positive
semide�nite, even when R is nearly singular.

4. NUMERICAL EXAMPLES

To illustrate the impact of using structured covariance ma-
trix estimates on angle estimation, consider the problem of
estimating the arrival angles �1 = 0� and �2 = 5� of two
uncorrelated signals with the same power impinging on a
ULA of M = 5 sensors separated by half wavelength. We
compare the performances of the standard MUSIC, ITAM-
MUSIC, AML-MUSIC as well as a WSF technique recently
proposed in [7]. Speci�cally, we use the root-MUSIC al-
gorithm for the �rst three MUSIC-related methods. The
WSF algorithm was shown in [7] to be a large sample ef-
�cient method for estimating the arrival angles of uncorre-
lated signals. Note that WSF can be viewed as a structured
covariance matrix estimator by plugging in the signal and
noise parameter estimates. De�ne the SNR for the k-th
incoming signal as SNRk = 10 log10(sk=�

2), where sk de-
notes the variance of the k-th signal. Figure 1 shows the
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Figure 1. MSE's of the estimates of �1 and the cor-
responding U-CRB and S-CRB versus SNR when

N = 256 and M = 5.

mean-squared errors (MSE's ) of the corresponding angle
estimates of �1, and the corresponding U-CRB and S-CRB,
versus SNR. The MSE's are based on 200 independent tri-
als. We note that:

� The standard MUSIC asymptotically (in SNR)
achieves the U-CRB, which is a well-known fact;

� AML-MUSIC and WSF asymptotically achieve the S-
CRB, with the former having a lower threshold SNR
than the latter;

� The U-CRB asymptotically approaches the S-CRB;

� ITAM-MUSIC never attains the S-CRB and performs
worse than the standard MUSIC when the SNR in-
creases.

The ITAM estimator was originally proposed as an algo-
rithm which can be used to enhance the performance of
such algorithms as MUSIC and ESPRIT when the SNR
is relatively low [4]. As indicated by Figure 1(b), ITAM's
performance is indeed quite good at low SNR. However,
ITAM is not an optimal method and there is no surprise
that ITAM-MUSIC never achieves the S-CRB. On the other
hand, the inconsistency (in SNR) of ITAM appears surpris-
ing at �rst sight. To explain it brie
y, note that as the
SNR goes to in�nity, we have lim�2!0

~R = A(�)~SAH(�),
where ~S is the sample signal covariance matrix which is not
diagonal for �nite N . In spite of the fact that ~R is not
Toeplitz in this case, the signal and noise subspaces can be
obtained exactly from ~R when the SNR goes to in�nity. For
a subspace-based algorithm like root-MUSIC, perfect angle
estimates can be obtained if the exact subspace is available.
However, ITAM attempts to �nd a Toeplitz matrix that is
as close to ~R as possible and no e�orts are made to ensure
appropriate subspace approximation. As a result, the sub-
spaces of ~R are distorted by the sequences of approximation
introduced by ITAM, and ITAM-MUSIC is hence inconsis-
tent in SNR. It is interesting to note that, even though
AML assumes a Toeplitz structure as ITAM, it does not
su�er from the inconsistency problem su�ered by ITAM. In



the appendix, we show that using the AML criterion (9)
in array processing when the SNR is high is equivalent to
seeking a Toeplitz matrix that is closest to the range space
of A(�). Consequently, the AML covariance matrix esti-
mate provides consistent (in SNR) subspace estimates and
AML-MUSIC in turn yields consistent angle estimates at
high SNR.
AML-MUSIC and WSF in general perform quite simi-

larly for most cases except, as we have found, that in some
di�cult scenarios, such as when the SNR is relatively low or
when the signals are close to each other, the former tends to
perform better than the latter. In addition, AML is a gen-
eral covariance matrix estimator and should of course not
be limited to the application of angle estimation; whereas
WSF is essentially an angle estimator. The following exam-
ple indicates that using AML in angle estimation involves
very modest additional computations. De�ne � as the ratio
of 
ops needed by ITAM-MUSIC, AML-MUSIC or WSF
to that by MUSIC. Figure 2 shows the curves of � versus
M when SNR=10 dB and N = 256. Clearly AML-MUSIC
needs the least computations, which is due to the computa-
tional e�ciency of AML, while WSF becomes computation-
ally much more involved than the others when M increases.
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ops ratio, �, versus M when

SNR=10 dB and N = 256.

5. CONCLUSIONS

We have presented an asymptotic ML method, referred to
as AML, for structured covariance matrix estimation. A
closed-form formula for Toeplitz covariance matrix estima-
tion has been derived. We have shown that using the AML
covariance matrix estimate improves the angle estimation
accuracy of MUSIC by achieving the relevant S-CRB. Fi-
nally, we remark on the fact that even though we have con-
centrated on Hermitian Toeplitz matrix estimation in this
paper, it is straightforward to extend the proposed tech-
nique to estimate any other matrices that have a linear
structure.

APPENDIX ANALYSIS OF AML AT HIGH SNR

In this appendix we show that the AML estimate of the
spatial covariance matrix R provides accurate estimate of

the signal subspace of R at high SNR. Let the eigendecom-
position of ~R be

~R = ~Es ~�s ~E
H
s + ~En ~�n ~E

H
n ; (21)

where ~�s is the diagonal matrix containing the K largest
eigenvalues with the columns of ~Es being the associated
eigenvectors, and ~�n is the diagonal matrix containing the
remaining eigenvalues with the columns of En being the
corresponding eigenvectors. Since, for su�ciently small �2,
we have ~�n = O(�2), it follows that

~R�1 = ~Es ~�
�1
s

~EHs + ~En ~�
�1
n

~EHn � ~En ~�
�1
n

~EHn : (22)

Hence we can rewrite the cost function in (9) at high SNR
as �

vec( ~RT �R
T (�))

�T
( ~R�T 
 ~R�1)

�
vec( ~R�R(�))

�
= tr

�
( ~R�R(�)) ~R�1( ~R�R(�)) ~R�1

�
� tr

��
IM �R(�)~En ~�

�1
n

~EHn

�2�
: (23)

The second term in (23) is of the order O(��2), and hence
is the dominant one. To minimize the criterion function in
(23), the AML estimation R(~�) of R must minimize this
term (as �2 ! 0). However this is only possible if the

range space of R(~�) is close to that of ~Es, which, in turn,
approaches the range space of A(�) (the so-called signal
subspace) as �2 ! 0.
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