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ABSTRACT

Feed-forward multi-layer neural network§MLNN's) are
complex nonlinear learning systems which canttaéned by
well-knownrules such aback-propagation (BP). The resulting
adaptation procedureare extremely difficult to analyze for
stochastic training data. Significaamalytic resultshave been
obtained forthe single-layer case arfdr somesimpletwo-layer
cases.
which models each threshold function abnaar device. This

linearized MLNN can only create hyperplane decision rules after

convergence. Howevethe multiplicativebehavior ofthe layers
may offer some performance advantages olieear adaptive
algorithms (LMS or RLS) whensedfor a linear problem. A
new log-domainlinear MLNN adaptive structure is proposed
and analyzed here. Thelog operation convertshe layer
multiplications into additions whereupon lineaanalysis

techniques can be used. The transient and steady-state statistical

behavior ofthe log linear MLNN is analyzed for @ussian
training data. Deterministic recursions are derif@dhe mean
and fluctuation behavior dhe new algorithm. These recursion
are shown to be in excellent agreement with Monte Carlo
simulations.

1. INTRODUCTION

The MLNN is denoted a linear MLNN for linear output neurons.
However,the linearMLNN is not alineardevice because of the
layer multiplication. The BP learning behavior thie linear
MLNN has beeranalyzed in [1] for somsepecial symmetrical
cases.
studied. The analysis ifi] suggestedhat the linearMLNN
performsbetter (i.e. a smaller misadjustment eri@rthe same
transient response) than theMS algorithm under some
operating conditions. Theonvergencespeed depends on the
number of layers in the lineLNN. First order analysis of

thelog of the weights yielded reasonable theoretical predictions

for the convergencerate and MSE. The firstorder

approximations were extended in [2].
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A structure was selected which convette multiplicative
operations of the lineavILNN layers to addive operations. A
single tap version of the new structuresisown in Figure 1.
The desired output is generated by multiplythg input by a
real scalara. The new adaptive structure estimates the
unknown system by

[ = { exd(1" ¢ 1)

Adaptation in the Log Domain

@

Recently, a structural simplification has been studie

Convergenapeed and mean square error (MSE) was

WhereWTz[\M W, V\{_], ]_T:[]_ 1 ... ]]

The input proces«x[n] is a real zero-mean, white Gaussian
sequence (ZMWGN) with unity variance. The independent
additive observation noise r[n] is alsor@al ZMWGN process
with unity variance. The gradient descent weight adaptation is

o= lex{v) gl @

a(vhere T signifies complex conjugate transpose.
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Weight initialization is a primarjssue because of thegarithm
operation. The coefficientare real ifthey are initialized real
and d, x are real. Thisffect simplifiesthe analysis. Thus, the
real initialization case is examined first. The gradient of

J=gleégis

Multi-Layered - Real Initialization

0J =-2R,exf1" w+2R ®3)
Whenthe weightvector is fixed athe optimum valuesay Wpt,
the gradient of the MSE is zero and

exp(lTwum) =R'R, (4)

The right side of (4) must be greater ttzamo forreal adaptive
weights to converge togst. Equation (4) also showthat an
infinite number of weight setachieve the optimum. For the
unknown systend = ax+ r and R'R, = a Therefore, a>0. If

R'R«w<0 and the weights are initialized real, (&@nnot
converge to y, in any sense.

Mean Recursion
The mean behavior of (2) is given by the recursion
E(wn+1)= () +ugexf’ ¥ O
The stationary point occurs when E(w[n+1])=E(w[n]) or when
Roflex(i )= B fexer §F)]  ©
To proceed further withhe analysis, the weights are assumed
Gaussian. Then, the expectations ind@) be evaluated using

the joint characteristicfunction for multi-variate Gaussian
random variables. For a real Gaussian random vector, this is

o, (W)= E(jQ"w)=exq j2"W) ex@-%fﬂ@@ ™
Hence

doalrrv)] - odp(rw) o 1ol ©



wherea is a real scalar,

C,=g(w-w)(w-'] and g=w O
Using (8) in (6) yields

R'R, = exp(lTV\) ex% 1 g]@ (10)
The stationary point can be reached siRghRq is positive.

Variance recursion
A recursion for G is needed to evaluate (1Qsing (2)and (5),

o+ = ufne 4w e ] a
=[] + p{[xdexdf v ﬂ) - R, %ex;(f \{v]'))]
¥ [x2 exe{2(U" wrl))- R H exf2(’ f [1.)))]} 1
Note thatw is a zero mean vector. Using (11) in (9) yields

Cun+1=C[d+u(A+ A)+n’B (12)

where
A =R ex;(Z(lT W)){ E{exy(Z(lT T/)r)( W+ 1T/\7)]} (13)
Ay = Ry exr(lT Vv){ E[expélT T/?( W+ 1W)]} (14)
andB is the coefficient of thg® term. Witha a real scalar, and
E[\Tvexp(a(f \7\))] =a (Qvl)expéh% TG J@ (15)
the form of the expectations A, A andB can be written as
A =-2R ex(2(1w+1" G 1))(G 1T + 11 G)-
A, = Rxdexpgfvw%f qv]gglf +11 g)-and
B={RR,exd21" W 1" GY)+ B ex{{T Y+ T ¢Y2expf ¢}-19 (16)
-R Ry exp%fv) +glT (;]@+(6 ex;(z(f G ]))— 2)
-Rfex;(A(lTW) +4(1T QV1))+(3ex;(z( TG, ]))— ])} 11

Theform of B in (16) is significant. B is a scalar multiplied by
a ones dyadimatrix. C[1] is thezeromatrix since the weights
are initialized to a constant. Thus,datisfy (5) and (12), the

covariance matrix elements must be identical.
(culnl), =(c[d), OCiikl=12,.. Linz1 A7)

The vector @1 is an L-dimensional vectavith Lc as itsunique
element, and ™wl=L%c. Thus, theovariancematrix recursion
reduces to a scalar recursion. Let

a. = (A<)ij; &q = ( A<d)ij ;b= ( Bjj (18)

"= 2Lc (21)
R;le[3exp(3E()— Gexif g+ 2]+ R
Equation (20) determines MSE as a function of p. Amation
of ¢, the MSE is

1=E(¢)= R-2R, oI’ W)+ R Eexf2T )22
=R, -R! I{dexp(— E()

The minimum MSE occurs for constanggw Using (4) in (22)

Jou = R~ R R, (23)
Thus, the excess MSExd iS
Joo = RIR{1-exi{- £4) 24)

1.3 Reduction to Single Layer Equivalents

Suppose a realization yields sequences x[n], r[n] and d[n], a
fixed a with weight sum initialization,I’w[1]). Consider two
adaptive systems with different weigddts but the samautput

din] for all n>0. Wedenotethe two systems indistinguishable.

The MSE in (22) is constaror constant Ec. L%c in (21) is
constant if pL constant. Consider two systems ifamily
defined by constaniL. They havethe same structure, except
for the number ofayers. Suppose systemwithin the family
has Ly layers, a specific and has ehieved weight sum at time
n of =1'w[n]. Consider system @ith L, layers with weight
sum s. Both systems yielthe samejn) because of the same

weight sum. For each systethe weight sum update of (1) is

U(w{ned-vfrd) = f dexfT ff Bp 29
which is independent of i. Both systems h#we sameveight
sum fortime n+1 and thus hawbde samegy, +1]. Inductively,

systems Jand 2 are indistinguishable. Thsystems within the
family defined by constant pare indistinguishable Therefore,
it is sufficient to study the behavior of a one layer system since it
defines performance dtie nulti-layered systems of the family.

14 Complex Initialization

In general, the sign o& is not known apriori. Thus, the
behavior of(2) must also be studied when the weights are
complex. Sincethe learning rule remains scalacpmplex
weight values do not changbe single versus multipleyer
equivalence. Thus, the multi-layeregistem behavior can be
described by the single layer system for the family behavior.

Real and Imaginary Parts
Equation (2) can be re-written in terms of separate recursions

An expression can be found for the stationary point of (12). Thefor the real and imaginary parts:

stationary point is defined biy(a, +a,,)=-pZb 19)

O L’c 3 g
2Lcexp:11W‘v+—%Rx expll' W+ Pa- R,
b2 ef g
b

o =

Equation (10) relates the mean weight, togariance matrix
and R(*R@.  Using (10) in (20) yields an expressitor the
weight covariance as a function of p:

we[n+1]= WR[n]+p[ xdexp( w ) cof W §- k ex@ o ])] (26)
w, [n+1]= w [+ ] xdexe w[ ) sir{ wf §]

where w and w are the real andmaginary parts of w,
respectively. Note that the recursions in (26) are not symmetric.

Mean Recursions

The analysis of theomplex mean recursions procesdsilarly
to that for the real mean recursiormsveraging(26), yields



w4 =W i + ] R, Hexe( wf ) cof vf J]
R exp(2(m[ i+ G[ )
w[n+d=w[ ] R gexa w] Bsi{ o B]

Equation (27) requires both the variances ara$s-covariance
of the real andmaginary parts of the weighwector. Thus,
recursions must be derived for

Cofn+1]= e 1]
c[n+1]= [ n+ 0] 1]
Cul+1]= 5[ )] v

(27)

(28)

These terms can be evaluated using the characteristic function @&quation (22) converts ¢ to MSE.

complex non-circular symmetric Gaussian random variables,
E[exp(orwR + jBw, )] and E{ex;(awq— BW|)]

for real jointly Gaussian random variablesgvand w with
arbitrary covariance. We evaluate using (7), so that

Efexrlows + iBw, )] = extfowe + jBw,) ex@%(a 20, +2 [ap - Bzc‘)§(29)
Efexrlows - iBw, )] = extfow, - jBw,) ex@%(a 2C, -2 pp - Bzc‘)ﬁ
After some algebra, the mean recursions are
WR[n+1]:WR[ri|+ueXp§WR+% G )
oo O Feofw + G,)- B x> o=
w [n+2)= w [+ 0B, exdfw +2 (G- Qfsifwr ¢)

Fluctuation Recursions

Using (29) in (28) yields the recursiof Cgr, G and Gy and
are given in [2].

Optimum Weights and the Minimum MSE

The gradient of the MSE surface zero when w=w,. The
gradient is zero when

sin(wlw) =0 (31)
and R(-l R(d COS( chl) = ex[( VY)W) (32)

Equation (31) holds because theknown system is assumed

real. Using (31) and (32),

_ [0
W, =M[RIRY, w :B
or equivalently eXF(Wopt) = EX[(WZP[) = Kl Rg4 (34)
The same minimum MSE occurs as in the real case.
Stationary Points

point is reached, the MSE of themplex logadaptive filter can
approactthe minimum MSE. As in theeal case, (21) relates p
and G for L=1. The second stationary point is approached if
the unknown system is unreachable. The adaptive increments
approach zero ag, — —o,

Ce[n+1]=Cyn
G ln+=c[]
Cu[n+1]= Cy[ 1]

2. MONTE CARLO SIMULATIONS

Figure 2 shows c(u) of equatiq@l) with L as a parameter.
The curves can be used thoose p for adesired MSE.
Several Monte Carlo
simulations were made to support the theory. rdls were
averaged for each simulation result. The first set is similar to the
real case with parameters ag#,003, R=1, R=1 and R=50.

We[n+1]= W[ n]

(37)
w,[n+1]= w[n

—
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Weight initialization significantly affectsthe performance
(multiple stationary points) and requires further study. Adaptive
systemsare customarilyinitialized at rest. For example, LMS
weights are initialized ateroand thesystem output is zero at
time zero. With log adaptive filters, if the weights are
initialized at zero, then explw)=1 and the adaptive system is
not atrest. There is no finite initial valder which the system
is at rest and if the weightgpproach «, the update in (2) is
made arbitrarily small turning theystem off. 8nilarly, the
initial learning updatecan be made arbitrarily large. As a
compromisethe weights are initialized so that exp)=1. To
exercise the algorithm’'smaginary part, the weight was
initialized at w[1]=.1j. Figure 3 showshe theoretical and
simulated excess MSE. Figure 4 shows C and G, for
theory and simulations. Figure 5 suggedtsat this small
imaginary part initialization is not sufficientfor identifying
negative systems. The sampandw[1] was usedopnly a=-7. In
this case, exp(®) — 0 implyingthat the weights arapproaching
the second stationary poiit. ws—-c. This behavior does not
converge. Figure 6 shows the correcitientified negative
systemwith w[1]=j. The imaginarypart is sufficient toallow
convergence tthe optimal weight. Not shown isthat a=7 can
also be identified with this initialization and that theory and
MC simulations agree well for the mean weight.

3. RESULTS AND CONCLUSIONS

The algorithm in (26) identified 1) a positive scafar the
initial complex weight in Fig. 3, 2) a positive or negative scalar
for the complexinitial weight in Fig. 6. The algorithm in (26)
could not identifythe negative scalafior the initial complex
weight in Fig. 5. The MSE surface is not a quadratic function of
the weights andanay have multiple minima satisfyinglJ = 0.
Hence, theglobal minimum ofthe surfacemay not be accessed

At least two stationary points are evident for the mean (27) and from every initial state. Thus, there are initializatregions for
covariance recursions. One stationary point is similar to the reawhich (26) can identify positive scalars, negative or both. This

(39)
(36)

case and occurs whem) = C,, =0
a 3
cog,) expft, +- G 1= R’ R,

Real weights occur when sin{nf)=0 for all n. If this stationary

and

will be examined more closely in a future work.
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Figure 1 - Block Diagram of Log Adaptive Filter
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Figure 2 - Weight variance as a function of learning rate
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Figure 3 - Excess error of complex algorithm for a=7
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Figure 4 - Variances and Covariances for a=7
Excess Square Error
10° ‘ ‘ ‘
\""**——n --Mean/Ave Excess §qua{ed Error
[
=]
2
e
D
<
=
101 Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400
Iteration
Figure 5 - Mean and average excess error for a=-7
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Figure 6 - Excess error for a=-7 with new initialization
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