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ABSTRACT

Feed-forward multi-layer neural networks (MLNN's) are
complex nonlinear learning systems which can be trained by
well-known rules such as back-propagation (BP).  The resulting
adaptation procedures are extremely difficult to analyze for
stochastic training data.  Significant analytic results have been
obtained for the single-layer case and for some simple two-layer
cases.  Recently, a structural simplification has been studied
which models each threshold function as a linear device.  This
linearized MLNN can only create hyperplane decision rules after
convergence. However, the multiplicative behavior of the layers
may offer some performance advantages over linear adaptive
algorithms (LMS or RLS) when used for a linear problem.  A
new log-domain linear MLNN adaptive structure is proposed
and analyzed here. The log operation converts the layer
multiplications into additions whereupon linear analysis
techniques can be used. The transient and steady-state statistical
behavior of the log linear MLNN is analyzed for Gaussian
training data. Deterministic recursions are derived for the mean
and fluctuation behavior of the new algorithm.  These recursion
are shown to be in excellent agreement with Monte Carlo
simulations.

1. INTRODUCTION

The MLNN is denoted a linear MLNN for linear output neurons.
However, the linear MLNN is not a linear device because of the
layer multiplication.  The BP learning behavior of the linear
MLNN has been analyzed in [1] for some special symmetrical
cases.  Convergence speed and mean square error (MSE) was
studied.  The analysis in [1] suggested that the linear MLNN
performs better (i.e. a smaller misadjustment error for the same
transient response) than the LMS algorithm under some
operating conditions. The convergence speed depends on the
number of layers in the linear MLNN.  First order analysis of
the log of the weights yielded reasonable theoretical predictions
for the convergence rate and MSE.  The first order
approximations were extended in [2].

1.1 Adaptation in the Log Domain

A structure was selected which converts the multiplicative
operations of the linear MLNN layers to additive operations.  A
single tap version of the new structure is shown in Figure 1.
The desired output is generated by multiplying the input by a
real scalar a.  The new adaptive structure estimates the
unknown system by
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The input process x[n] is a real zero-mean, white Gaussian
sequence (ZMWGN) with unity variance.  The independent
additive observation noise r[n] is also a real ZMWGN process
with unity variance.  The gradient descent weight adaptation is

[ ] [ ] [ ] ( ) [ ]w n w n x n w e n+ = +1 µ exp †1 1 (2)

where † signifies complex conjugate transpose.

1.2 Multi-Layered - Real Initialization

Weight initialization is a primary issue because of the logarithm
operation. The coefficients are real if they are initialized real
and d, x are real. This effect simplifies the analysis.  Thus, the
real initialization case is examined first.  The gradient of

( )J E e e= *  is
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When the weight vector is fixed at the optimum value, say wopt,
the gradient of the MSE is zero and

( )exp1T
opt x xdw R R= −1 (4)

The right side of (4) must be greater than zero for real adaptive
weights to converge to wopt.  Equation (4) also shows that an
infinite number of weight sets achieve the optimum.  For the
unknown system,d ax r= +  and R R ax xd

− =1 .  Therefore, a>0. If

Rx
-1Rxd<0 and the weights are initialized real, (1) cannot

converge to wopt in any sense.

Mean Recursion

The mean behavior of (2) is given by the recursion
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The stationary point occurs when E(w[n+1])=E(w[n]) or when
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To proceed further with the analysis, the weights are assumed
Gaussian.  Then, the expectations in (6) can be evaluated using
the joint characteristic function for multi-variate Gaussian
random variables.  For a real Gaussian random vector, this is
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where α is a real scalar,
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Using (8) in (6) yields
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The stationary point can be reached since Rx
-1Rxd  is positive.

Variance recursion 

A recursion for CW is needed to evaluate (10). Using (2) and (5),
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Note that ~w  is a zero mean vector.  Using (11) in (9) yields
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where
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and B is the coefficient of the µ2 term.  With α a real scalar, and

( )( )[ ] ( )E w w C CT
w

T
w

~exp ~ expα α α
1 1 1 1=









2

2
(15)

the form of the expectations in Ax, Axd and B can be written as
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The form of B in (16) is significant.  B is a scalar multiplied by
a ones dyadic matrix.  C[1] is the zero matrix since the weights
are initialized to a constant.  Thus, to satisfy (5) and (12), the
covariance matrix elements must be identical.
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The vector CW1 is an L-dimensional vector with Lc as its unique
element, and 1TCW1=L2c.  Thus, the covariance matrix recursion
reduces to a scalar recursion.  Let
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An expression can be found for the stationary point of (12).  The
stationary point is defined by ( )µ µa a bx xd+ = − 2 (19)
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Equation (10) relates the mean weight, the covariance matrix
and Rx

-1Rxd.  Using (10) in (20) yields an expression for the
weight covariance as a function of µ:
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Equation (20) determines MSE as a function of µ.  As a function
of c, the MSE is
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The minimum MSE occurs for constant wopt.  Using (4) in (22)

J R R Ropt d x xd= − −1 2 (23)

Thus, the excess MSE, Jexc, is

( )( )J R R L cexc x xd= − −−1 2 21 exp (24)

1.3 Reduction to Single Layer Equivalents

Suppose a realization yields sequences x[n], r[n] and d[n], a
fixed a with weight sum initialization, (1Tw[1]).  Consider  two
adaptive systems with different weight sets but the same output
$d[n] for all n>0.  We denote the two systems indistinguishable.

The MSE in (22) is constant for constant L2c.  L2c in (21) is
constant if µL constant.  Consider two systems in a family
defined by constant µL.  They have the same structure, except
for the number of layers.  Suppose system 1 within the family
has L1 layers, a specific µ1 and has achieved weight sum at time
n of sn=1Tw[n].  Consider system 2 with L2 layers with weight
sum sn.  Both systems yield the same $d[n] because of the same

weight sum. For each system, the weight sum update of (1) is

[ ] [ ]( ) [ ] [ ]( ) [ ]1 1T
i i
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which is independent of i.  Both systems have the same weight
sum for time n+1 and thus have the same $d[n + 1].  Inductively,

systems 1 and 2 are indistinguishable.  Thus systems within the
family defined by constant µL are indistinguishable.  Therefore,
it is sufficient to study the behavior of a one layer system since it
defines performance of the multi-layered systems of the family.

1.4 Complex Initialization

In general, the sign of a is not known a priori.  Thus, the
behavior of (2) must also be studied when the weights are
complex.  Since the learning rule remains scalar, complex
weight values do not change the single versus multiple layer
equivalence.  Thus, the multi-layered system behavior can be
described by the single layer system for the family behavior.

Real and Imaginary Parts

Equation (2) can be re-written in terms of separate recursions
for the real and imaginary parts:
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where wR and wI are the real and imaginary parts of w,
respectively.  Note that the recursions in (26) are not symmetric.

Mean Recursions

The analysis of the complex mean recursions proceeds similarly
to that for the real mean recursions.  Averaging (26), yields
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Equation (27) requires both the variances and cross-covariance
of the real and imaginary parts of the weight vector.  Thus,
recursions must be derived for
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These terms can be evaluated using the characteristic function of
complex non-circular symmetric Gaussian random variables,

( )[ ] ( )[ ]E w j w E w j wR I R Iexp expα β α β+ −   and   

for real jointly Gaussian random variables wR and wI with
arbitrary covariance.  We evaluate using (7), so that
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After some algebra, the mean recursions are
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Fluctuation Recursions

Using (29) in (28) yields the recursions for CR, CI and CRI and
are given in [2].

Optimum Weights and the Minimum MSE

The gradient of the MSE surface is zero when w=wopt.  The
gradient is zero when

( )sin wIopt
= 0 (31)

and ( ) ( )R R w wx xd I Ropt opt

− =1 cos exp (32)

Equation (31) holds because the unknown system is assumed
real.  Using (31) and (32),
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or equivalently ( ) ( )exp exp *w w R Ropt opt x xd= = −1 (34)

The same minimum MSE occurs as in the real case.

Stationary Points
At least two stationary points are evident for the mean (27) and
covariance recursions.  One stationary point is similar to the real
case and occurs when C CI RI= = 0 (35)
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Real weights occur when sin(wI[n])=0 for all n.  If this stationary

point is reached, the MSE of the complex log adaptive filter can
approach the minimum MSE.  As in the real case, (21) relates µ
and CR for L=1.  The second stationary point is approached if
the unknown system is unreachable.  The adaptive increments
approach zero as wR → −∞ ,
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2. MONTE CARLO SIMULATIONS

Figure 2 shows c(µ) of equation (21) with L as a parameter.
The curves can be used to choose µ for a desired MSE.
Equation (22) converts c to MSE.  Several Monte Carlo
simulations were made to support the theory.  10 runs were
averaged for each simulation result. The first set is similar to the
real case with parameters a=7, µ=.003, Rx=1, Rr=1 and Rd=50.

Weight initialization significantly affects the performance
(multiple stationary points) and requires further study.  Adaptive
systems are customarily initialized at rest.  For example, LMS
weights are initialized at zero and the system output is zero at
time zero.  With log adaptive filters, if the weights are
initialized at zero, then exp(1Tw)=1 and the adaptive system is
not at rest.  There is no finite initial value for which the system
is at rest and if the weights approach -∞, the update in (2) is
made arbitrarily small turning the system off.  Similarly, the
initial learning update can be made arbitrarily large.  As a
compromise, the weights are initialized so that exp(1Tw)=1.  To
exercise the algorithm’s imaginary part, the weight was
initialized at w[1]=.1j.  Figure 3 shows the theoretical and
simulated excess MSE.  Figure 4 shows CR, CI and CRI for
theory and simulations.  Figure 5 suggests that this small
imaginary part initialization is not sufficient for identifying
negative systems.  The same µ and w[1] was used, only a=-7.  In
this case, exp(wR)→0 implying that the weights are approaching
the second stationary point, i.e. wR→-∞.  This behavior does not
converge.  Figure 6 shows the correctly identified negative
system with w[1]=j.  The imaginary part is sufficient to allow
convergence to the optimal weight.  Not shown is that a=7 can
also be identified with this initialization and that the theory and
MC simulations agree well for the mean weight.

3. RESULTS AND CONCLUSIONS

The algorithm in (26) identified 1) a positive scalar for the
initial complex weight in Fig. 3, 2) a positive or negative scalar
for the complex initial weight in Fig. 6.  The algorithm in (26)
could not identify the negative scalar for the initial complex
weight in Fig. 5.  The MSE surface is not a quadratic function of
the weights and may have multiple minima satisfying ∇J = 0.
Hence, the global minimum of the surface may not be accessed
from every initial state.  Thus, there are initialization regions for
which (26) can identify positive scalars, negative or both.  This
will be examined more closely in a future work.
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Figure 1 - Block Diagram of Log Adaptive Filter
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Figure 3 - Excess error of complex algorithm for a=7
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Figure 4 - Variances and Covariances for a=7
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Figure 5 - Mean and average excess error for a=-7
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Figure 6 - Excess error for a=-7 with new initialization


