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ABSTRACT

In this paper, an algorithm for wavelet packet trees that can
systematically identifyall bit allocations/best-basis selec-
tions on the lower convex hull of the rate-distortion curve is
presented. The algorithm is applied to tree-structured vector
quantizers used to code image subbands that result from the
wavelet packet decomposition. This method is compared to
optimal bit allocation for the discrete wavelet transform.

1. WAVELETS

Traditional Fourier analysis decomposes a signal into a sum
of orthogonal trigonometric functions, creating a frequency
representation of the data. However, Fourier analysis elim-
inates all temporal or spatial information. When compress-
ing signals such as images, it is often desirable to capture
local frequency characteristics, especially since a great por-
tion of signal energy in the frequency domain is consumed
by discontinuities. Atime-frequencyor space-frequency
representation of a signal can be used to capture local fre-
quency behavior of signals and images.

Wavelets[1–3] are an important tool for time-frequency
analysis in which simple, orthonormal bases ofL2(Rd ) are
built with good localization properties in both space and
frequency providing a powerful framework for image cod-
ing. Wavelets are used to transform an image into localized
orthogonal components containing different band-pass fre-
quency information. Localization is especially important
for handling image features such as abrupt changes due to
boundaries or edges.

To create orthonormal wavelet packets, a signal is de-
composed into smooth (S) and detail (D) subbands corre-
sponding to different orthogonal frequency bands. To cre-
ate more packets, the subbands are further decomposed. An
isotropic wavelet packet tree (WPT) decomposition [3] with
orthogonal subbands is shown in Figure 1. Each signal
space is the direct sum of its subspaces. Hence the origi-
nal signal can be represented by the leaves of any subtree
of the WPT. For example, the common discrete wavelet
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Figure 1: The wavelet packet decomposition for a 1-d signal
decomposed to 3 levels.SandD refer to smooth and detail
subbands.

transform (DWT) is the subtree comprised of subbandsD,
DS, DSS, andSSS. Fast and efficient implementation of the
wavelet packet transform can be done inO(N logN) which
is equivalent to the time required by the fast Fourier trans-
form. The use of a predetermined subtree of the WPT, such
as the DWT, may reduce computation time.

The main advantage of wavelet packets is better sig-
nal representation by choosing the subbands that are better
adapted to the frequency characteristics of the signal. The
search for the “best” non-redundant representation of the
data by any subtree of the WPT is calledbest-basis selec-
tion [4]. Best-basis selection begins by evaluating each sub-
band with a desired metric (e. g. rate or distortion). Then,
using this information, a post-ordered search of the WPT is
done while a best-basis decision for each branch is made.
The post-ordered traversal enables exploitation of the recur-
sive property that each signal space is the direct sum of its
subspaces. An example of this is given in Figure 2.

Two important problems associated with image com-
pression are the quantization of the wavelet subbands and
the allocation of bits to each subband. If using wavelet
packets, best-basis selection must also be considered. An
algorithm for joint bit allocation/best-basis selection which



6 b 1 b

8 b

Original Data

4 b 2 b 2 b 1 b

DSSS SD DD

DS

4 b 2 b 2 b 1 b

3 b 1 b

2 b

DSSS SD DD

S = SS + DS D

Original Data = S + D = SS + DS + D

Figure 2: Best-basis selection for a 1-D 2-level WPT based
on rate. (a) The WPT with initial rates. (b) Using a post-
ordered search, the best-bases for subbandsSS, DS, SD, and
DD are the subbands themselves. For subbandS, it is better
to use subspacesSSandDS with average rate 3 b, than the
subband itself which requires 6 b. For subbandD, it is better
to use subbandD with average rate 1 b, than subspacesSD
andDD which requires 1.5 b. Finally, for the original data,
subspacesSS, DS, andD with average rate 2 b should be
used rather than the original signal requiring 8 b.

heuristically finds a WPT bit allocation/best-basis selection
on the lower convex hull of the rate-distortion curve close
to the design rate was presented in [5]. However, due to the
heuristic search, it is possible that it is not the solution clos-
est to the desired rate. In this paper, a systematic approach
to joint bit allocation/best-basis selection which will find all
vertices on the lower convex hull of the rate-distortion curve
is presented. By having the optimal rate-distortion charac-
teristics for all bit rates, a precise description of the encoder
alone can be used in the design of more complex encoding
schemes.

2. VECTOR QUANTIZATION

Vector quantization (VQ) is a lossy compression technique
that has been used extensively in speech and image com-
pression [6]. VQ exploits the memory or correlation ex-

isting between neighboring signal samples by quantizing
them together. Tree-structured VQ [6] (TSVQ) is a low-
complexity alternative to full search VQ where the code-
book is structured as a binary (orM -ary) tree and the code-
words are leaves of the tree.

A well known approach to TSVQ design is to create a
high-rate TSVQ, and then prune it based on rate-distortion
trade-offs to yield a pruned TSVQ (PTSVQ) with the de-
sired rate [7]. One common pruning algorithm is the gen-
eralized Breiman, Friedman, Olshen, and Stone (GBFOS)
algorithm [8]. GBFOS PTSVQ’s typically outperform both
fixed rate TSVQ and full search VQ over most rates of inter-
est [7]. GBFOS produces PTSVQ’s that are optimal in the
sense that they lie on vertices of the lower convex hull of
the rate-distortion curve. In addition, GBFOS can system-
atically locateall codebooks on the lower convex hull, pro-
viding a complete description of the optimal rate-distortion
characteristics of the TSVQ by rate, distortion, and slope of
the vertices.

3. BIT ALLOCATION

Bit allocationis the process of assigning a given number of
bits to the wavelet subbands to minimize the overall distor-
tion of a coder. A good bit allocation method usually results
in much better performance by devoting more bits to regions
of the signal that are active or difficult to code and fewer bits
to less active regions.

An orthonormal, non-redundant wavelet transform has
the property that the average rate and MSE distortion of a
signal quantized in the wavelet domain is the average rate
and MSE distortion of the quantized coefficients. This is
convenient for performing bit allocation to all subbands si-
multaneously. A subtreeS of an orthonormal WPT with
leaves~S offers a non-redundant representation with average
rate and distortion

R(S) =
X

n2 ~S

R(n) and D(S) =
X

n2 ~S

D(n);

whereR(n) andD(n) are the normalized rate and distortion
of the encoded subbandn.

To optimize bit allocation so that for a given rate the
lowest distortion quantizer is used, the Lagrangian mini-
mization technique is used to formulate the quantization
cost as the average distortion plus a penalty for the rate of
the subtree:

J(S) =
X

n2 ~S

D(n) + �
X

n2 ~S

R(n):

The cost is minimized when� = �@D(n)
@R(n) , regardless of the

subtree. Therefore, optimal bit allocation is achieved when
the quantizers for each subband lie on the same slope on the
lower convex hull of the rate-distortion curve.



4. OPTIMAL BIT ALLOCATION AND BEST-BASIS
SELECTION

For optimal bit allocation, the problem is to minimize the
costJ(S) for a given subtreeS. For best-basis selection,
the problem is to find the subtreeSopt which minimizes the
cost over all other subtrees:

Sopt = argmin
S�T

[J(S)] :

If � is fixed, thenJ(S) is the desired measure used to find
the best-basis. Thus, by fixing�, the best basis is identified
by minimizing the cost, and then the rate and distortion are
evaluated. This is the foundation for [5] which heuristically
selects different values of� until a rate close to the desired
rate is found.

To systematically find all bit allocation/best-basis solu-
tions on the lower convex hull, it is necessary to know all
slopes on the lower convex hull ranging from 0 to1. Then
the best bases, rates and distortions of the WPT at all vertex
points can be evaluated.

Again, by using WPT quantizers which lie on the lower
convex hull of their local rate-distortion curves, and which
intersect the same slope, the best-basis selection is recur-
sively computed by a post-ordered traversal of the WPT.
This reduces the joint bit allocation/best-basis search to that
of finding the lower convex hull of each WPT branch, that
is, the lower convex hull of two convex hulls must be iden-
tified. An example is shown in Figure 3 where the solid
line represents the lower convex hull of the given subband,
the dotted line represents the lower convex hull of the best-
bases of the node’s children, and the gray line represents the
lower convex hull of the optimal bit allocation/best-basis se-
lection between the given node and all of its descendents.

Assuming that the rate-distortion curves for the subband
PTSVQ’s are found via GBFOS (i. e. the curves are con-
vex, and the rate, distortion, and slopes of the vertices are
known) then the slopes for the lower convex hull of the WPT
can be easily found. If there is no change in best basis, then
the slope of the WPT’s lower convex hull is the same as
the slope of the current best-basis. If there is a change in
bases, then the slope of the WPT is the slope between the
two vertex points being compared. The change in bases can
be detected by computing the slope between the two current
vertex points. If this slope is greater than the largest slope
to the right of the two current vertex points, and less than
the smaller slope to the left of the two current vertex points
then there is a change in bases.

The change can also be detected by examining the cost
functionJ(S). Each vertexv can be intersected by a slope
in the interval[�l(v); �r(v)] where�l and�r refer to the
slopes to the left and right of the vertex. Two verticesv1, v2
can be intersected by any slope in the interval

[min(�l(v1); �l(v2));max(�r(v1); �r(v2))]:
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Figure 3: Optimal bit allocation/best-basis selection

If the cost functionJ(S), evaluated at the two endpoints
of the interval, shows that both vertices are on the lower
convex hull, then a change of bases will occur.

Details of the algorithm are given in [9]. Regardless of
how the change is detected, after each post-ordered traver-
sal, the current best basis of each branch is described by
its rate, distortion, and the minimum slope leading to the
next adjacent vertex on the lower convex hull of the rate-
distortion curve.

5. RESULTS

For these experiments, WPT/PTSVQ optimal bit allocation
was done using USC database images crowd, couple, man,
woman1, and woman2 as training data. The PSNR of the
training data as a function of WPT depth (Figure 4) im-
proves with increased WPT depth. This is expected as more
levels of decomposition permits more adaptability in signal
representation and compression. However, improvements
decrease with increasing WPT depth, and it may not be
worthwhile to use a WPT with more than 3 levels.

Bit allocation as a function of vector dimension is exam-
ined in Figure 5, where it is seen that it is better to use larger
vector dimensions. Note that some curves start increasing
rapidly at higher bit rates. This is a reflection of overtraining
of the PTSVQ’s due to the finite amount of training data. All
of the curves exhibit this behavior although it is not shown
in these graphs.

A comparison of DWT/PTSVQ and WPT/PTSVQ opti-
mal bit allocation for three decomposition levels as a func-
tion of vector dimension is shown in Figure 6. As expected,
WPT/PTSVQ outperforms DWT/PTSVQ for all vector di-
mensions since the DWT is a subset of the WPT.



6. CONCLUSIONS

In this paper, the problem of joint bit allocation and best-
basis selection for wavelet packets was addressed by an al-
gorithm that identifies all solutions on the lower convex hull
of the rate-distortion curve. This algorithm was applied
to PTSVQ’s used to code image wavelet packet subbands,
and compared to optimal bit allocation for the DWT. It was
found that WPT/PTSVQ outperformed DWT/PTSVQ, as
expected since the DWT is a subset of the WPT, and the
WPT approach is inherently adaptive. It was also seen that
results improved as the vector dimension and decomposi-
tion level increased.
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Figure 4: WPT/PTSVQ bit allocation as a function of WPT
depth. The vector dimension is 4 for all PTSVQ’s.
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Figure 5: WPT/PTSVQ bit allocation as a function of vector
dimension. All PTSVQ’s in a WPT have the same vector
dimension.
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Figure 6: WPT/PTSVQ versus DWT/PTSVQ bit allocation
for 3 levels of decomposition.
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