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ABSTRACT

The chirp function is one of the most fundamental func-
tions in nature. Many natural events can be roughly
approximated by a group of chirp functions. In this paper,
we present a practical adaptive chirplet based signal
approximation algorithm. Unlike the other chirplet
decompositions known so far, the elementary chirplet
functions employed in this algorithm are adaptive. There-
fore, the resulting approximation could better match the
underlying signal and uses fewer coefficients. The effec-
tiveness of the algorithm is demonstrated by numerical
simulations.

1. INTRODUCTION

It is well understood that the chirp is one of the most
important functions in nature. Many natural phenomena,
for instance, the impulsive signal that is dispersed by the
ionosphere [6], the bird sound, and the human voice, could
roughly be approximated by a group of chirp functions. If
the chirp function has a smooth amplitude, such as that of
a Gaussian envelope, then it becomes a typical AM-FM
model, e.g.,

(1)

Because hp(t) in Eq.(1) only lasts for a short time period, it
is named chirplet in some literature ([1] and [3]). It is
interesting that the chirplet is the only function whose
Wigner-Ville distribution is non-negative. Therefore, the
chirplet also plays an important role in the area of joint
time-frequency analysis.

Since the chirplet is fundamental, it is desirable to have a
method of representing a signal in terms of weighted chir-
plets. In [1] and [3], the parameters (αp, tp, ωp, βp) of the
chirplet hp(t) are limited to a fixed grid. They are easier to
implement, but do not always fit the underlying signal
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well. The adaptive method [4] (also known as the match-
ing pursuit [5]) is presumably able to better characterize
the signal’s nature, but its implementation is much more
involved. So far, no practical chirplet based matching pur-
suit algorithm has been reported.

It is the goal of this paper to introduce a feasible algorithm
to represent an arbitrary signal in terms of group adaptive
chirplets. The paper is arranged as follows. First, we
briefly review the general matching pursuit scheme. The
bottleneck in realizing the matching pursuit is estimating
the optimal chirplet. In section 3, we will give a detailed
treatment of computing optimal chirplets. Finally, a few
numerical examples are presented to demonstrate the
effectiveness of the algorithm introduced in this paper.

2. ADAPTIVE APPROXIMATION

For a signal s(t), we could have a following representation,

(2)

where sp+1(t) denotes the difference between sp(t) and
Aphp(t), i.e.,

(3)

Note that s0(t) = s(t). The coefficient Ap is the regular
inner product between the signal sp(t) and the adaptive
function hp(t), i.e.,

(4)

The adaptive elementary function hp(t) is chosen such that

the residual ||sp+1(t)||2 is minimum, i.e.,
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which is equivalent to
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It can be proved [7] that the residual ||sp+1(t)||2 monotoni-
cally decreases as P, the number of terms, increases.
When P is large enough and the number of samples is
finite, the residual may reduce to zero!

The approximation scheme described by Eq.(2) to (6) is
called the matching pursuit in some literature. It was inde-
pendently developed by the authors ([4] and [5]) and Mal-
lat and Zhang [2] around the same time period.

The key step of the matching pursuit is to solve the opti-
mization problem posted in Eq.(6). In principle, the con-

vergence of the residual ||sp+1(t)||2 is independent of the
type of elementary functions hp(t) used. In other words,
any function can be used to match the underlying signal.
For a practical implementation, however, we have to limit
hp(t) to certain simple parametric models. Otherwise, it
will be too complicated to solve Eq.(6). Previously, hp(t)
was limited to be the frequency modulated Gaussian func-
tion, that is, βp = 0 in Eq.(1).

Because of the limitation of the frequency modulated
Gaussian elementary functions, researchers have proposed
the chirplet based adaptive approximation method. So far,
however, no practical implementation has been reported.
The main difficulty lies in the solution of Eq.(6) when
hp(t) is a four-parameter chirplet. In the next section, we
will address this problem.

3. ESTIMATION OF OPTIMAL CHIRPLETS

Applying the zooming principle, we developed the so-
called zooming algorithm to estimate the optimal chirplet
with βp = 0 (frequency modulated Gaussian elementary
function). In what follows, we shall list some important
results without justification. The reader can find a com-
prehensive treatment of the zooming algorithm in [5] and
[7].

The outputs of the zooming algorithm are:

• the time variance 1/d, where d ≥ αp. The equality 
holds for βp = 0;

• the center time <t>, where <t> = tp;

• the mean frequency <ω>. <ω> = ωp, for βp = 0.

By using the zooming algorithm, we can completely
determine the optimal hp(t) in Eq.(1) for βp = 0. Unfortu-
nately, it is not the case when hp(t) is a general chirplet
function.
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The zooming algorithm introduced in [5] essentially only
uses the time waveform. As a matter of fact, the power
spectrum of hp(t) also contains useful information as illus-
trated in Figure 1.

Figure 1  The width of the power spectrum is proportional to the
frequency change rate β.

The bottom plot of Figure 1 illustrates a typical chirplet
defined in Eq.(1). The left plot depicts the corresponding
power spectrum. The middle one is the Wigner-Ville dis-
tribution given by

(7)

which is non-negative. As shown in Figure 1, the width of
the power spectrum of hp(t) is proportional to the fre-
quency change rate |βp|. The larger the |βp|, the wider the
width of the power spectrum. Applying the Wigner-Ville
distribution’s marginal property [7], we can compute the
analytical form of the power spectrum of hp(t), i.e.,

(8)

which is a Gaussian function with the mean frequency

(9)

Note that the quantity <ω> is estimated by the zooming
algorithm. When βp= 0, <ω> = ωp.

The variance of the power spectrum of hp(t) in Eq.(8) is

(10)

which implies that αp is strictly less than c. When βp = 0,
c = αp = d, where 1/d is the time variance estimated by the
zooming algorithm.

Now, the estimation procedure can be summarized as fol-
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lows:

1. Apply the zooming algorithm to estimate the time 
variance 1/d, center time <t> (that is equal to tp), and 
mean frequency <ω>;

2. Compute the signal’s power spectrum;
3. In the frequency domain, estimate the frequency vari-

ance c of the Gaussian function centered at <ω>;
4. Check if c = d. If so, then βp = 0. In this case, αp = d = 

c, tp = <t>,  ωp = <ω>. Otherwise, go to the next step;
5. Set the initial value of αp to d;
6. Compute βp via Eq.(10) and then ωp via Eq.(9);
7. Construct hp(t) in Eq.(1);
8. Compute the inner product of hp(t) and sp(t) in Eq.(4);
9. Reduce αp by a small quantity ∆, that is, αp=: αp - ∆. 

Then, repeat Step 6. to Step 8. until αp = 0. The 
parameters (αp, tp, ωp, βp) corresponding to the larg-

est |Ap|
2 constitute the optimal chirplet hp(t).

The most time consuming task is Step 9. The decrement ∆
balances the processing time and the estimation accuracy.
Obviously, the bigger the ∆, the poorer the accuracy (but

less time). Because |Ap|
2 is less sensitive to small αp,

instead of using a uniform decrement ∆, we start with a
small ∆ and then gradually increase it as αp gets smaller.
By doing so, we could substantially improve the process-
ing speed without scarifying the accuracy.

4. NUMERICAL SIMULATIONS

The test signal used in this section is an echo-location
pulse emitted by a large brown bat, Eptesicus fuscus. The
original data, as shown in Figure 2, contains 400 samples.
Table 1 lists the number of chirplets used and correspond-
ing residual and the processing time based on the Micron
Pentium 120 PC with 32M RAM. The relative residual
there is defined by

(11)

Figure 2  Bat Sound (Bat data provided by Curtis Condon, Ken
White, and Al Feng of the Beckman Institute at the
University of Illinois.)

Note that each chirplet is completely determined by four

residual
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parameters (αp, tp, ωp, βp) plus a coefficient Ap. As shown
in Table 1, by using five chirplets (that is, 25 parameters)
we could represent 400-sample bat sound with a residual
less than ten percent. The computation time required is
less than half a second. 

Figure 3 to Figure 7 illustrate time-dependent spectra
computed by different approaches [7]. The adaptive spec-
trogram is defined by ([4] and [5])

(12)

which is non-negative. When the residual is equal to zero,
the energy contained in AS(t,ω) is the same as the signal’s
energy. Table 2 lists the processing time for each different
method.

Figure 3  Chirplet based Adaptive Spectrogram (5 chirplets)

Figure 4  Frequency Modulated Gaussian Function based Adaptive
Spectrogram

Compare Figure 3, the chirplet based adaptive spectro-
gram, and Figure 4, the frequency modulated Gaussian

Table 1: 

Number of 
Chirplets

Residual (%)
Processing Time

(second)

1 58.0 0.11

2 31.1 0.22

3 22.7 0.29

4 15.9 0.38

5 9.76 0.49
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function based adaptive spectrogram. It is obvious that the
chirplet matches the signal better. Compared to other
methods, the chirplet based spectrogram not only has
good time-frequency resolution, but also has a moderate
computing speed.

Figure 5  Pseudo Wigner-Ville Distribution                                                    

Figure 6  STFT Spectrogram                                                                    

Figure 7   Gabor Spectrogram (order = 4)                                                      

Table 2: 

Method
Processing 

Time (second)

Chirplet based Adaptive Spectro-
gram (5 chirplets)

0.93

Frequency modulated Gaussian 
based Adaptive Spectrogram

0.35

STFT Spectrogram 0.36

Pseudo Wigner-Ville Distribution 0.29

Gabor Spectrogram (order = 4) 3.13

5. SUMMARY

Using both time and frequency information, we develop
an efficient algorithm for estimating optimal elementary
chirplet functions. The resulting adaptive chirplet based
signal approximation not only can better characterize the
underlying signal than the previously known chirplet
based signal’s representations, but also has moderate com-
puting speed. During extensive testing, the algorithm pre-
sented in this paper has been found to be robust and stable.
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