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ABSTRACT well. The adaptive method [4] (also known as Ithetch-
. L ing pursuit[5]) is presumably able to better characterize
The chirp function is one of the most fundamental funGp gjgnal's nature, but its implementation is much more

tions ir,] nature. Many natura_l event§ can be_ roughh‘lvolved. So far, no practical chirplet based matching pur-
approximated by a group of chirp functions. In this pape

: ) ) ! 'Lrit algorithm has been reported.

we present a practical adaptive chirplet based signa

approximation algorithm. Unlike the other chirpletltis the goal of this paper to introduce a feasible algorithm

decompositions known so far, the elementary chirpldé® represent an arbitrary signal in terms of group adaptive

functions employed in this algorithm are adaptive. Thereghirplets. The paper is arranged as follows. First, we

fore, the resulting approximation could better match theriefly review the general matching pursuit scheme. The

underlying signal and uses fewer coefficients. The effegottleneck in realizing the matching pursuit is estimating

tiveness of the algorithm is demonstrated by numerictie optimal chirplet. In section 3, we will give a detailed

simulations. treatment of computing optimal chirplets. Finally, a few
numerical examples are presented to demonstrate the

1. INTRODUCTION effectiveness of the algorithm introduced in this paper.

It is well understood that the chirp is one of the most 2. ADAPTIVE APPROXIMATION
important functions in nature. Many natural phenomena,

for instance, the impulsive signal that is dispersed by tirer a signa(t), we could have a following representation,
ionosphere [6], the bird sound, and the human voice, could

roughly be approximated by a group of chirp functions. If Pt 5
the chirp function has a smooth amplitude, such as that of (9 = ZOAphp(t) *Sp+ (D) (2)
a Gaussian envelope, then it becomes a typical AM-FM P
model, e.g., where s,,(t) denotes the difference betwesy(t) and
(o = [f_pml/4e-ap(t-tp)2/2+i(wpt+Bptz/Z) W Aphp(t), ie.,
p On O Sp+1(t) = (1) —Ahy(t) (3)
ap=0 Note thatsy(t) = s(t). The coefficientA, is the regular

itinner product between the signa(t) and the adaptive

Becausdy(t) in Eq.(1) only lasts for a short time period, . .
function hp(t), ie.,

is namedchirplet in some literature ([1] and [3]). It is
interesting that the chirplet is the only function whose _
Wigner-Ville distributionis non-negative. Therefore, the A = Isp(t)hp(t)dt “)

chirplet also plays an important role in the area of joinfhe adaptive elementary functibg(t) is chosen such that

time-frequency analysis. . . . .
quency analy theresidual By ()] is minimum, i.e.,

Since the chirplet is fundamental, it is desirable to have a

method of representing a signal in terms of weighted chir- min_ H5p+1(t)||2 = min_ 5,0 —Aphp(t)||2 5)
plets. In [1] and [3], the parametersy( t,, wy, Bp) of the P b

chirplethy(t) are limited to a fixed grid. They are easier tgvhich is equivalent to

implement, but do not always fit the underlying signal



ma>$1p|Ap|2 = ma>$]p‘Isp(t)hp(t)dt‘2 (6)

It can beproved [7] that the residuakdkl(t)||2 monotoni-

cally decreases aP, the number of terms, increases.

When P is laige enogh and the number of saues is
finite, the residual mareduce to zero!

The gproximation scheme described Eq.(2) to (6) is
called thematching pursuitn some literature. It was inde-
pendenty develged ty the authors ([4] and [5]) and Mal-
lat and Zhag [2] around the same tinperiod.

The ke st of the matchig pursuit is to solve thepbi-

mization problem posted in .(6). In principle, the con-
vemgence of the residuab‘uﬂ(t)n2 is indgpendent of the
type of elementar functionshy(t) used. In other words,

ary function can be used to match the ungad signal.
For apractical inplementation, however, we have to limit
hy(t) to certain simple parametric models. Otherwise, it

will be too conplicated to solve E.(6). Previous}, hp(t)

was limited to be the fopeng modulated Gaussian func-
tion, that is, = 0 in E.(1).

Because of the limitation of the feeny modulated
Gaussian elementafunctions, researchers hgu®posed
the chiplet based adaive goproximation method. So far,
however, nopractical inplementation has beenparted.
The main difficuly lies in the solution of &(6) when
hy(t) is a fourparameter chplet. In the next section, we

will address thigroblem.

3. ESTIMATION OF OPTIMAL CHIRPLETS

Applying the zoomig principle, we develped the so-
calledzooming algorithnto estimate theptimal chimplet
with B, = 0 (frequeny modulated Gaussian elemeptar

function). In what follows, we shall list some portant
results withoutustification. The reader can find a com-
prehensive treatment of the zoomialgorithm in [5] and

[7].

The ouputs of the zoomig algorithm are:

* the time variance 8l whered = a,. The euality
holds forB, = 0;

* the center time &, where © =t

*  the mean frgueny <w>. <w> = w, for B, = 0.

By usirg the zoomig algorithm, we can completely
determine the timal hy(t) in Eq.(1) for B, = 0. Unfortu-
natey, it is not the case whelmy(t) is ageneral chiplet
function.

The zoomig algorithm introduced in [5] essentiglbnly
uses the time waveform. As a matter of fact, phever
spectrum ofhy(t) also contains useful information as illus-

trated in Fgure 1.

Figure 1 The width of thpower gectrum isproportional to the
frequeng charge ratep.

The bottomplot of Figure 1 illustrates aypical chimplet
defined in E.(1). The leftplot depicts the corrggonding
power pectrum. The middle one is thW¥igner-Ville dis-
tribution given by

ap(t—t,)> = (w—w,— Bt/ a, 7)
which is non-ngative. As shown in ure 1, the width of
the power gectrum of hp(t) is proportional to the fre-

queny charge rate By|. The lager the |, the wider the

width of thepower pectrum. Aplying the Wigner-Ville
distribution’s maginal property [7], we can corpute the
anaytical form of thepower pectrum ofhy(t), i.e.,

WVD,(t, w) = 2e

2
T ~(w—w,—Bpt,)/c

Hp(w)| = [WVD,(t @)t = 2[-:e (8)

which is a Gaussian function with the meamfrencg
(9)

Note that thequantity <w> is estimated Y the zoomig
algorithm. WhenBy= 0, <w> = w,

[0l = w, + Bptp

The variance of thpower pectrum ofhy(t) in Eq.(8) is

2 2
%+ By

Ip

c= (10)

which implies thatay, is strictly less thare. When(, = 0,
c =0, =d, where 1d is the time variance estimateg the
zoomirg algorithm.

Now, the estimatioprocedure can be summarized as fol-



lows: parameterso,, t,, Wy, By) plus a coefficiensy,. As shown

in Table 1, by using five chirplets (that is, 25 parameters)
we could represent 400-sample bat sound with a residual
less than ten percent. The computation time required is
less than half a second.

1. Apply the zooming algorithm to estimate the time

variance 1d, center time &> (that is equal t¢},), and

mean frequency >,

Compute the signal’s power spectrum;

3. Inthe frequency domain, estimate the frequency vari- Table 1:
ancec of the Gaussian function centered at<

n

4. Checkifc=d. If so, ther, = 0. In this casey, =d = Number of Processing Timd
C ty=<t> = <w>. Otherwi h . ; Residual (%)
p T ’ (*)p - . se, go to the next Step, Ch”‘p'ets (Second)
Set the initial value af, to d;
1 58.0 0.11

ComputeB, via Eq.(10) and thew, via Eq.(9);
Construchy(t) in Eq.(1); 2
Compute the inner productigf(t) andsy(t) in Eq.(4); 3

Reducex, by a small quantity, that is,ap=: ap - A.

Then, repeat Step 6. to Step 8. uafjl= 0. The 4 15.9 0.38
parameterso(,, t,, Wy, Bp) corresponding to the larg- 5

est Al? constitute the optimal chirplé(t).

31.1 0.22

© o N,

22.7 0.29

9.76 0.49

The most time consuming task is Step 9. The decrefnent Figure 3 to Figure 7 illustrate time-dependent spectra
balances the processing time and the estimation accuracgpmputed by different approaches [7]. The adaptive spec-
Obviously, the bigger thA, the poorer the accuracy (but trogram is defined by ([4] and [5])

less time). Becausef\d|2 is less sensitive to smadl, 01 , ,
instead of using a uniform decremeyntwe start with a AS(tw) =2y |Ap’26—%(1—‘p) — (-, =B,/ a, (12)
smallA and then gradually increase it@sgets smaller. p=0

By doing so, we could substantially improve the process

. ; g ‘which is non-negative. When the residual is equal to zero,
ing speed without scarifying the accuracy.

the energy contained lSt,w) is the same as the signal’s
energy. Table 2 lists the processing time for each different

4. NUMERICAL SIMULATIONS method.

The test signal used in this section is an echo-location
pulse emitted by a large brown bBaptesicus fuscudhe
original data, as shown in Figure 2, contains 400 samples.
Table 1 lists the number of chirplets used and correspond-
ing residual and the processing time based on the Micron
Pentium 120 PC with 32M RAM. The relative residual
there is defined by

2
residual = w % 100 (11) Figure 3 Chirplet based Adaptive Spectrogram (5 chirplets)
Is( O

0.0E+D 5.0E3 1.0E2 15E-2 20E-2 25E-2 [sec)

Figure 2 Bat Sound (Bat data provided by Curtis Condon, KenFigure 4 Frequency Modulated Gaussian Function based Adaptive
White, and Al Feng of the Beckman Institute at the Spectrogram

University of lllinois.) Compare Figure 3, the chirplet based adaptive spectro-

Note that each chirplet is completely determined by fourgram, and Figure 4, the frequency modulated Gaussian



function based adaptive spectrogram. It is obvious that the 5. SUMMARY

chirplet matches the signal better. Compared to other

methods, the chirplet based spectrogram not only ha¥/Sing both time and frequency information, we develop

good time-frequency resolution, but also has a moderat&" efficient algorithm for estimating optimal elementary
computing speed chirplet functions. The resulting adaptive chirplet based

signal approximation not only can better characterize the
underlying signal than the previously known chirplet
based signal’s representations, but also has moderate com-
puting speed. During extensive testing, the algorithm pre-
sented in this paper has been found to be robust and stable.
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