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ABSTRACT

We present the concept of a scaled random segmental model,
which aims to overcome the modeling problem created by
the fact that segment realizations of the same phonetic unit
di�er in length. In the scaled model the variance of the ran-
dom mean trajectory is inversely proportional to the seg-
ment length. The scaled model enables a Baum-Welch type
parameter reestimation, unlike the previously suggested,
non-scaled models, that require more complicated iterative
estimation procedures. In experiments we have conducted
with phoneme classi�cation, it was found that the scaled
model shows improved performance compared to the non-
scaled model.

1. INTRODUCTION

The standard hidden Markov model (HMM) provides a
powerful technique for representing speech utterances by
a piecewise stationary process. The model assumes the ex-
istence of states, such that the observations are locally in-
dependent and identically distributed (IID) within a state.
However, empirical evidence indicates that the feature vec-
tors that correspond to some of these states clearly vio-
late the IID assumption. In recent years, alternative mod-
els, that attempt to overcome this limitation were proposed
and implemented in automatic speech recognition systems.
These methods are usually known by the name segment
models, since the fundamental modeling unit is the entire
phonetic unit (segment), unlike HMMs that utilize frame-
based modeling. A comprehensive survey on the subject can
be found in [6]. Over the past decade a number of studies
have proposed segment models composed of stochastic de-
scription of the mean trajectory, as an alternative to the
multi description of the mean trajectory, that is provided
by mixture of Gaussians HMMs. Random trajectory seg-
mental modeling can be thought of a generalization of the
Gaussian HMM formalism. The main di�erence is that the
mean trajectory of the acoustic feature vector in a state is
not a �xed parameter. Instead, it is a random variable sam-
pled once for each state transition. The acoustic motivation
for this framework is that we wish to separately model two
distinct types of variability: long term variations caused by
factors such as speaker identity, and short term variations
which occur within a given state as a result of random uc-
tuations. The long term variability is modeled by a prob-
ability density function (PDF) used to select the sampled

mean trajectory. The short term variability within a state
is modeled by the deviation of the feature vectors from the
sampled mean trajectory. In standard HMM these two ef-
fects are modeled implicitly by a single PDF. In this paper
we concentrate on the case where the trajectories PDF is
Gaussian and the mean trajectory within the state bound-
aries is either constant or linear function of time. We term
this models static random segmental model and linear ran-
dom segmental model, respectively. The static model was
originally presented by Russell [7] and by Gales and Young
[4]. This model is reviewed in the next section. We shall
analyze the shortcomings of the static model and suggest a
modi�cation of the model through scaling the variance of
the trajectories PDF according to the segment length. The
linear model was introduced by Holmes and Russell [5]. We
shall present the scaled version of the linear model. We
show that the scaled models are much easily trained and
show better performance.

2. STATIC RANDOM MODEL

A static random segmental model assumes that the obser-
vations within an HMM state x = (xt1 ; :::; xt2) are realized
according to :

xt = �j;a + a+ �t t = t1; :::; t2

where �j;a is a �xed parameter, associated with the state
j, that describes the grand mean trajectory. t1; :::; t2 is the
time interval of the sojourn in the state j. The random
variable a is a shift of the mean trajectory. It is sampled
at the transition into the state j and is global to the visit
in the state. It is assumed that a � N(0; �2j;a) (i.e., a is
a Gaussian random variable with zero mean and variance
�2j;a). The short term variability is represented by �t, which
is a zero mean Gaussian random variable with state depen-
dent variance, �t � N(0; �2j ). A closed-form expression for
the PDF of the data segment associated with the state j
can be obtained as follows [4] :
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and �t is the segment duration, namely t2 � t1 + 1. To
simplify notation, it is assumed that the observations are
one dimensional. Generalization to the multi-dimensional
case is straight-forward. A left to right HMM topology is
assumed.

According to this model, during the generation of the
utterance, �rst a state sequence is chosen and then the ob-
servations sequence is sampled according to that state se-
quence. The probability of the utterance x is obtained by
summing over all possible state sequences :

f(x) =
X
s

f(x; s)

Dynamic programming must be applied in order to e�-
ciently compute this expression. A similar dynamic pro-
gramming is performed in order to compute the likelihood
score in the standard HMM. However, in segmental models
computation of the density function is far more complex.
This is due to the fact that the probability of a frame does
not depend only on the state but also on the location of
this frame within the segment sampled during the visit in
the state. In a segmental model we can not compute the
probability of a single frame in a state. We must compute
the probability of the entire segment. The complexity of
the algorithm can be reduced by assuming a maximal state
duration.

We now discuss the parameter estimation problem. As-
sume that the training data-base consists of the k utterances
x1; :::; xk. In the Viterbi decoding approach we estimate the
parameters using only the best suited state sequence. For
the Baum-Welch algorithm, however, we must consider all
the possible state sequences. Each state sequence is consid-
ered according to its relative weight. Denote by wi(j; t1; t2)
the a-posteriori probability that the portion of the utter-
ance xi sampled at state j is xit1 ; :::; x

i
t2 . Applying Base

rule yields :

wi(j; t1; t2) =

P
f(xi; s)

f(xi)

where the sum is performed over all the state sequences such
that the time interval of the sojourn in the state j is from t1
to t2. An extension of the Forward-Backward algorithm can
be applied for e�cient computation of wi(j; t1; t2). Com-
puting the expressions wi(j; t1; t2) is actually the main part
of the E-step of the Baum-Welch considered as a special
case of the EM-algorithm. In case of multi-dimensional
observations and diagonal matrix covariances, the weights
wi(j; t1; t2) are computed for all the observations compo-
nents together. Once the weights are computed, the esti-
mation can be performed for each component separately.
Denote the parameter set we want to estimate by �. De-
note the parameter set associated with the state j by �j =

f�j;a; �
2
j;a; �

2
j g. The current estimate at the beginning of

the EM iteration is denoted by ~�. The EM auxiliary func-
tion is :

Q(�; ~�) = E(log f(x; s; �)jx; ~�)

=
X
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f(sjxi; ~�) log f(xi; s; �)

where s is the hidden state sequence that was used to pro-
duce xi. Di�erentiating the auxiliary function with respect
to �j;a yields :
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Setting this partial derivative to zero yields the re-estimation
formula for �j;a.
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This formula is not a valid re-estimation expression since
the unknown parameters appear on both sides of the equa-
tion. For the other parameters, namely �j;a and �j , a
closed-form expression can not be obtained. Gales and
Young [4] proposed to overcome this di�culty by using the
approximation �t�2j;a � �2j . Russell [7] used the joint prob-
ability of the observations and the optimal shift as the tar-
get function for the maximization problem. In this manner
a closed-form expression can be obtained for all the param-
eters. He also proposed to substitute the current parameter
values on the right hand side of the re-estimation equations.
Digalakis et al. [2] have considered the static random model
as a special case of the state space dynamic model. They
suggested to solve the maximization problem we have in the
M-step using an inner EM-algorithm. The unknown values
of the shift random variable a are the missing data for that
inner EM.

In the next section we shall suggest a modi�cation of the
static random segmental model that overcomes the prob-
lems mentioned above.

3. SCALING THE MODEL PARAMETERS

We now present a model which we have termed scaled static
random segmental model. It is similar to Russell's model
that was presented in the previous section, except that

a � N
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�

where �t is the segment length i.e. the duration of the
sojourn in the state j. The scaled static model asserts that



the variance of the mean trajectory is inversely proportional
to the segment length.

A closed-form expression for the PDF of the data seg-
ment associated with the state j in the scaled model can

be obtained by substituting
�2
j;a

�t
in place of �2j;a in equa-

tion (1). The re-estimation expression for �j;a in the scaled

model can be obtained by substituting
�2
j;a

�t
in place of �2j;a

in (2), thus yielding:
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As can be seen from comparing expressions (2) and (3),
the re-estimation equation of the non-scaled model assigns
smaller weight to frames that correspond to segments with
longer duration. On the other hand, the scaled model as-
signs equal weight to each frame, independently of the dura-
tion of the segment that corresponds to that frame. Hence,
the re-estimation equation of the scaled model coincides
with our intuition that each data sample encapsulates the
same amount of information about the mean trajectory.

Scaling the model also enables us to obtain closed-form
re-estimation formulae for the other parameters. Denote :
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Setting the derivative of Q(�; ~�) with respect to �2j;a to zero,
yields the following relation :
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where k is the number of utterances. Direct computation
reveals :
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Substituting (4) in (5) yields the following Baum-Welch re-
estimation equations :
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It should be noted that the estimate for �2j;a can be
negative. However, it can be seen from the PDF of the
scaled static model that the actual parameter is not �2j;a
but �j = �2j + �2j;a, and the estimate of �j is always non-
negative.

4. LINEAR RANDOM MODEL

Deng et al. [1] proposed a segment model which general-
ized the standard Gaussian HMM. In their model the mean
trajectory is a deterministic linear function of time. In this
linear HMM an observation sequence within a state is gen-
erated according to :

xt = �j;a + �j;b(
t�t1

t2�t1
�
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2
) + �t t = t1; :::; t2

such that t1 is the time index of the transition into the
state j and t2 is the time index of the end of the sojourn in
the state j. Holmes and Russell [5] presented a stochastic
variant of a linear HMM. In their model, the linear mean
trajectory is a random variable which is sampled on each
arrival at the state. The model can be written as :

xt = �j;a + a+ (�j;b + b)(
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where �j;a and �j;b are �xed parameters, a and b are inde-
pendent normal random variables :

a � N(0; �2j;a) ; b � N(0; �2j;b)

and �t is a Gaussian white noise term, �t � N(0; �2j ).
We now present the scaled version for the linear random

segmental model. The motivation for this model is similar
to that for the static case. The scaled model spreads the
information on the hidden linear trajectory uniformly along
the time axis.

From equation (2) it can be seen that the modeling
problems in the static model are created by the fact that
the contribution of each sample to the estimation of �j;a
is weighted by the term 1
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duration of the segment corresponds to that sample. In
a similar manner, in the linear model the contribution of
each sample to the estimation of �j;b is weighted by the
term 1
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In the scaled linear model, therefore, the variances of a and
b are functions of the segment duration as follows :
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where �t is the segment length. It can be shown that using
the scaled linear models enables us to obtain a closed-form
solution for the maximization problem we have in the M-
step of the Baum-Welch procedure. In other words, explicit
re-estimation expressions can be obtained for all the param-
eters of the linear model. For example, the re-estimation
formula for �j;b is :
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m-n p-t s-ae t-s
data-base size 3626 1194 862 863
deterministic static 56.0 63.5 78.2 68.1
unscaled static 49.4 61.0 80.3 69.3
scaled static 52.7 65.1 79.6 71.4
deterministic linear 57.9 67.6 79.9 66.7
unscaled linear 59.3 64.0 88.4 72.1
scaled linear 61.9 67.7 88.9 74.8

Table 1: Phoneme classi�cation rate results

5. EXPERIMENTAL RESULTS

We evaluated the model presented in the previous section
using the ARPA, large vocabulary, speaker independent,
continuous speech, Wall Street Journal (WSJ) corpus. Ex-
periments were conducted with DECIPHER, SRI's continu-
ous speech recognition system [3]. The recognizer was con-
�gured with a front end that outputs a 39-dimensional vec-
tor. The �rst components of the vector consist of 12 cepstral
coe�cients and an energy term. The other components of
the feature vector are the �rst and second time derivatives
of the �rst 13 components.

The task we chose for evaluation is phonetic classi�ca-
tion. In classi�cation the correct segmentation (phoneme
beginning and ending time) of the input observation se-
quence is given. Our objective is to assign correct phone
labels to each segment. The DECIPHER system was used
to determine automatically the phoneme segmentation for
each sentence in the database. Having obtained phoneti-
cally aligned test data, the actual classi�cation process is
just a matter of �nding the most likely phone label for a
speech segment according to the models being evaluated.
Context dependent phonetic units were chosen because, in
that case there are fewer discrepancies between utterances.
Hence, in practice, this is usually the case of interest when
using segment models.

The models we implemented for evaluation were:

1. Standard Gaussian HMM.

2. Static random model [7].

3. Scaled static random model.

4. Linear mean trajectory segment model [1].

5. Linear random model [5].

6. Scaled linear random model.

In Table I we present recognition results for some fre-
quently occurring triphone contexts. The �rst data row
indicates the number of triphone occurrences for each con-
text. Half of the occurrences were used to train each model.
The other half was used to test the models. As can be seen,
the scaled model outperforms the previously suggested non-
scaled mode.

6. CONCLUSIONS

In this study we have proposed, implemented and evaluated
a new type of random trajectory segment model where the

variance of the mean trajectory is inversely proportional to
the segment duration. In this model the division of the
acoustic information in an utterance does not depend on a
speci�c segmentation. Instead, we extract the same amount
of information about the mean trajectory from each data
frame. We have named this approach a scaled modeling.
One desirable attribute of the scaled model is that it leads
to a simple training algorithm. More precisely, given some
training set, an exact Baum-Welch type algorithm can be
employed. On the other hand, in the non-scaled model, ei-
ther an iterative algorithm or an approximated target func-
tion are required to handle the maximization problem we
have in the M-step of the Baum-Welch procedure.
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