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ABSTRACT

The problem of passive localization of coherently scattered
sources with an array of sensors is considered. The spatial
extent of such a source is typically characterized by an an-
gular mean and an angular spreading parameter. The max-
imum likelihood (ML) estimator for this problem requires
a complicated search of dimension equal to twice the num-
ber of sources. However, a previously reported sub-optimal
MUSIC type method reduces the search dimension to two
(independently of the number of sources). In this paper,
the search over the angular mean parameter in the above
MUSIC type technique is replaced by a possibly more e�-
cient polynomial rooting procedure. Computer simulations
verify the e�ectiveness of the proposed method compared
to the performance of the ML and MUSIC estimators as
well as to the Cramer-Rao Bound.

1. INTRODUCTION

Most passive source localization research over the past sev-
eral years has focused on the estimation of the spatial pa-
rameters of sources which are modeled as single points in
space. However, in applications such as mobile communi-
cations and sonar where multipath or scattering e�ects are
present, a so-called \scattered" source model may be more
appropriate. A scattered source can be thought of as pos-
sessing spatial extent over some continuum of directions.
This spatial extent is typically characterized by a paramet-
ric spatial density function. As in [1], it is convenient to
distinguish between \coherently distributed" and \incoher-
ently distributed" scattered sources. The received signal
components due to a coherently (incoherently) distributed
source are correlated (uncorrelated) at each direction over
which the scattering extends.

The localization problem for scattered sources is one
of using the data received by an array of passive sensors
to estimate the parameters of each sources' spatial den-
sity function. Maximum likelihood (ML) approaches to the
problem (e.g., [2], [3]) involve a multi-dimensional search
whose dimension increases as the number of sources in-
creases. The resulting high computational complexity has
led to the development of a more economical sub-optimal,
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sub-space type approach based on the MUSIC algorithm
(e.g., [1], [4]).

In this paper, a modi�cation of the above subspace
approach is presented for coherently distributed scattered
sources. In particular, the search over the mean angle pa-
rameter of the spatial density function is replaced by a poly-
nomial rooting procedure. For multi-modal cost functions,
polynomial rooting may be a computationally attractive al-
ternative to an exhaustive search. The procedure is similar
in spirit to those taken for multi-parameter localization of
near �eld sources [5] and sources in shallow water [6].

The paper is organized as follows: The speci�c prob-
lem to be solved is formulated in Section 2. The ML and
MUSIC approaches to the problem are reviewed in Section
3. The new polynomial rooting method is described in Sec-
tion 4. Performance results based on computer simulations
are presented in Section 5. Lastly, some conclusions and
directions for future work are noted in Section 6.

2. PROBLEM FORMULATION

Consider N narrow band, far �eld scattered sources whose
wave�elds impinge on a co-planar array of M passive sen-
sors. The received snapshot of sensor outputs at time t can
be modeled as [1]:

z(t) =

NX
n=1

Z
1

�1

a(�)sn(�; tj n)d� +w(t) (1)

a(�) = [e�j!o�1(�); � � � ; e�j!o�M (�)]T (2)

where [�]T denotes the vector transpose operation, a(�) is
the standard M � 1 far-�eld point source steering vector
at direction of arrival (DOA) and center frequency , �, and
!o, respectively, and sn(�; tj n) is the so-called \spatio-
temporal signal density" of the nth source whose spatial
component is characterized by a spatial parameter vector
 n. The time for the signal emitted by a source at � to
travel from the array origin to the mth sensor is given by:

�m(�) = �
1

c
(y1m cos � + y2m sin �); (3)

m 2 f1; � � � ;Mg

where fy1m ; y2mg and c denote respectively the Cartesian
coordinates specifying the location of the mth sensor and



the speed of propagation. Lastly, w(t) is a vector of additive
spatio-temporally white noise of variance �2.

For coherently distributed scattered sources, the spatio-
temporal signal density function can be decomposed into
a temporal component and a deterministic spatial density
function parameterized by its spatial parameter vector:

sn(�; tj n) = p(�j n)un(t); n 2 f1; � � � ; Ng (4)

This enables us to rewrite (1) as:

z(t) = Bu(t) +w(t) (5)

B = [b( 1); � � � ;b( N )]

b( n) =

Z
1

�1

a(�)p(�j n)d�

u(t) = [u1(t); � � � ; uN (t)]
T

The spatial density functions considered in this paper are
assumed to be completely characterized by two parame-
ters: a mean angle parameter  1 2 [��; �) and an angular
spreading parameter,  2.

Note that if the signal waveforms, fun(t)g
N
n=1, are sta-

tionary zero mean random processes, then the array snap-
shot is a stationary zero mean random vector process with
covariance:

R = E[z(t)zH(t)] = B�B
H + �2I (6)

� = E[u(t)uH(t)]

where [�]H denotes the conjugate transpose operation.
The spatial parameter estimation problem for coher-

ently distributed scattered sources is one of estimating the
N spatial parameter vectors f ng

N
n=1 from the received

data. It is assumed that the spatial density function type
is the same for all N sources and is completely known to
within its spatial parameter vector. Also, the number of
sources is assumed known and less than the number of sen-
sors: N < M .

3. ML AND MUSIC ESTIMATORS

In this section, the ML and MUSIC estimators for f ng
N
n=1

are presented. Let us assume that L discrete time samples
of the snapshot vector fz(l)gLl=1 are available. Beginning
with the ML estimator, if the signal and noise waveforms
are Gaussian, the snapshot vector itself is Gaussian. As
in the point source case (e.g., [7]), the resulting estimator
requires a search over N2 + 2N + 1 parameters. However,
again as in the point source case, ML estimates of the signal
covariance matrix and noise power can be formed in terms
of the spatial parameters allowing the search dimension to
be reduced to 2N (see [3]). Such an estimator is written
as:

b�RML = argmin
�
QRML(�); (7)

QRML(�) =
h
ln jBb�BH + b�2Iji

b� = B
#(bR� b�2I)B#H

b�2 =
1

M �N
tr
�
P
?

B
bR�

bR =
1

L

LX
l=1

z(l)zH(l) (8)

B
# = (BHB)�1BH ; P

?

B = I�BB
#

� = [ T1 ; � � � ; 
T
N ]
T

provided b� is positive semi-de�nite where ln(�) and j � j re-
spectively denote the natural logarithm and matrix deter-
minant operation.

Assuming that the sources are not perfectly correlated,
the MUSIC estimator exploits the orthogonality between
the N spatial signature vectors and the M �N \noise sub-
space" eigenvectors associated with the M � N smallest
eigenvalues of the covariance matrix of (6). In practice, the
noise subspace eigenvectors from the estimated covariance
matrix of (8) are computed, and the estimates are given as
the N lowest minima of the MUSIC cost function:b�MU = argN lowest min

�
QMU( 1;  2) (9)

QMU( 1;  2) =

�
bHbEnbEHn b

bHb

�

bR =

MX
m=1

�̂mêmê
H
m; bEn = [êN+1; � � � ; êM ]

�̂1 � � � � � �̂M

where f�̂mg
M
m=1 and fêmg

M
m=1 respectively denote the eigen-

values and eigenvectors of the estimated covariance matrix.

4. POLYNOMIAL ROOTING APPROACH

Consider the form of the spatial signature vector,
b( 1;  2). As in [5]-[6], the polynomial rooting modi�ca-
tion to the MUSIC algorithm is motivated by observing
that each element of the spatial signature vector can be ex-
pressed as a Fourier series in the mean angle parameter,
 1:

bm( 1;  2) =

1X
k=�1

Cmk( 2)e
jk 1 ; (10)

Cmk( 2) =
1

2�

Z �

��

bm( 1;  2)e
�jk 1d 1

m 2 f1; � � � ;Mg

where bm = [b]m denotes themth element of the spatial sig-
nature vector. In practice, (10) is often well approximated
by a 2K + 1 term truncated Fourier series:

bm( 1;  2) �

KX
k=�K

Cmk( 2)e
jk 1 (11)

which in matrix form can be expressed as:

b( 1;  2) � C( 2)g( 1) (12)

[C( 2)]mk = Cm;k�K�1( 2); [g( 1)]k = ej(k�K�1) 1

k 2 f1; � � � ; 2K + 1g



where C( 2) is aM�(2K+1) matrix of Fourier coe�cients
and g( 1) is a (2K +1)� 1 polynomial type vector of com-
plex exponentials. The approximation in (12) motivates the
de�nition of a new cost function based on (9):

�QPR(z;  2) =
h
g(1=z)CH( 2)bEnbEHn C( 2)g(z)i (13)

[g(z)]k = zk�K�1; z = ej 1 :

Note that �QPR(z;  2) is a polynomial of order 4K in z
whose coe�cients exhibit conjugate symmetry. Here, asymp-
totically, when L tends to in�nity and the Fourier series
truncation index,K, tends to in�nity, the roots of �QPR(z;  2)
for the N true values  2 occur on the unit circle at z = ej 1

for the N true values of  1. Also, note that since the poly-
nomial coe�cients are conjugate symmetric, the roots occur
in reciprocal pairs. If the roots are denoted as f�k( 2)g

4K
k=1,

then for each �k( 2) there will be another \redundant" root
at 1=�k( 2).

In practice, a search grid for the angular spreading pa-
rameter,  2 is de�ned. Then, for each value on the grid,
the search in mean angle,  1, is replaced by a polynomial
rooting operation, where the angles of the \non-redundant"
roots closest to the unit circle are chosen:

b�PR = argN lowest min
�

QPR( 2) (14)

QPR( 2) = [j1� j�k( 2)j]

The mean angle estimates are the angles associated with
the roots satisfying the above criterion.

5. PERFORMANCE RESULTS

Results from computer simulations of the ML estimator (7),
the ordinary MUSIC estimator (9), and the polynomial ap-
proach of (14) are now presented and compared against the
Cramer-Rao Bound (CRB) as computed in [3]. Consider
the case of an M element uniform linear array (ULA) with
inter-element spacing d (relative to the signal wavelength)
and coherently distributed scattered sources with uniform
spatial density:

p(�j ) =

�
1

2 2
j� �  1j �  2

0 otherwise

For small  2, it is known that the elements of the spatial
signature vector can be approximated as [1]:

bm = ej2�d(m�[M+1]=2) sin 1

�sinc(2d(m� [M + 1]=2) 2 cos 1)

where sinc(�) = sin(��)=(��).
In particular, consider an M = 4 element ULA with

half-wavelength inter-element spacing (i.e., d = 0:5) and a
single coherently distributed scattered source with uniform
spatial density. Computer simulations of the estimators de-
scribed in Sections 3 and 4 based on 1000 independent re-
alizations were carried out for various SNR's, mean angles,
and polynomial orders. Performance results are shown in
Figs. 1 and 2 for mean angle and spreading, respectively,
as a function of SNR. The true parameters are:  1 = 0

and  2 = �=10. Results (bias, standard deviation, and
root mean square error (RMSE)) are shown for the newly
proposed technique for K = 12 and K = 16. It is seen
that for su�ciently high SNR (and su�ciently high poly-
nomial order in the case of the newly proposed technique)
the CRB is achieved by all three estimators. Note that for
 1 the threshold SNR below which estimator performance
deviates from the CRB is lower for the K = 16 polynomial
rooting based estimator than the K = 12 estimator. Next,
performance results are shown in Figs. 3 and 4 as a function
of  1 for �xed SNR = 10dB and  2 = �=10. For mean angle
values not near end-�re the relatively higher order K = 16
estimator achieves the CRB (as do the ML and MUSIC es-
timators). Closer to end-�re the K = 12 estimator is biased
and deviates from the CRB.

6. CONCLUSIONS

This paper has presented a polynomial rooting approach to
the localization of coherently distributed scattered sources.
In particular, the search for the mean angle parameter in
the MUSIC procedure is replaced by a polynomial rooting
operation. Performance of the proposed technique was com-
pared with that of the ML and ordinary MUSIC estimators
as well as the CRB. It was seen that for su�ciently high
SNR and polynomial order the performance of the newly
proposed procedure often achieved the CRB. Future work
will include development of an analogous polynomial root-
ing approach for incoherently scattered sources.
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Figure 1: Estimator Performance for the mean angle pa-
rameter as a function of SNR. (M = 4,  1 = 0,  2 = �=10,
T = 1000). (o) ML, (x) MUSIC, (+) K = 12 Polynomial
Rooting, (*) K = 16 Polynomial Rooting, (solid) CRB.
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Figure 2: Estimator Performance for the angular spread-
ing parameter as a function of SNR. (M = 4,  1 = 0,
 2 = �=10, T = 1000). (o) ML, (x) MUSIC, (+) K = 12
Polynomial Rooting, (*) K = 16 Polynomial Rooting,
(solid) CRB.
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Figure 3: Estimator Performance for the mean angle pa-
rameter as a function of SNR. (M = 4,  1 = 0,  2 = �=10,
T = 1000). (o) ML, (x) MUSIC, (+) K = 12 Polynomial
Rooting, (*) K = 16 Polynomial Rooting, (solid) CRB.
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Figure 4: Estimator Performance for the angular spreading
parameter as a function of SNR. (M = 4, SNR = 10dB,
 2 = �=10, T = 1000). (o) ML, (x) MUSIC, (+) K =
12 Polynomial Rooting, (*) K = 16 Polynomial Rooting,
(solid) CRB.


