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ABSTRACT

In this paper, we present an analysis of the delayless subbabnd
adaptive filter structure previously proposed by the authors. We
derive a simple expression for the excess MSE of the proposed
structure, and show that it requires up to 3.7 times less computa-
tional complexity than the corresponding fullband LMS structure.
Also, we establish a connection between subband and block adap-
tive filtering, where the latter can be interpreted as a special case
of the former. Some computer simulations are presented in order
to verify the performance of the proposed structure and the theo-
rectical results.

1. INTRODUCTION

It is known that when the conventional subband adaptive filter
structure is implemented in an open loop scheme, a perfect recon-
struction filter bank along with adaptive cross-filters among sub-
bands are necessary to identify the unknown system correctly [1].
This increases the computational burden and the algorithm suffers
from slow convergence in comparison with the fullband scheme.
In a closed loop scheme, the MSE convergence is degraded due
to the delay introduced in the adaptation algorithm. This problem
was first addressed in [2], and it was proposed a delayless archi-
tecture. This paper presents an analysis of the new delayless struc-
ture proposed in [3], regarding the excess MSE, the computational
complexity involved, and a relation between subband and a block
adaptive filter proposed in [4].

2. THE DELAYLESS STRUCTURE

Fig. 1 illustrates theM -channel delayless structure in a closed
loop configuration. The analysis filters correspond to a DFT filter
bank, where the prototype filter has to be aNyquist(M)filter. In
this case, its polyphase components approximate fractional delays,
an interpretation that allows a subband/wideband mapping of the
adaptive filters [3]. It has been shown that this structure presents
faster convergence speed than the corresponding fullband scheme,
and perfect modeling is achieved if we useL = N=M + 1 length
adaptive filterswi(n), i = 0,...,M � 1, whereN is the length of
the unknown system. The normalized LMS updating equations for
the closed loop scheme are given by

wi(n+ 1) = wi(n) +
2�

�2i (n)
u�i (n)e

0

i(n) (1)

�2i (n) = ��2i (n� 1) + (1� �) jui(n)j
2 , (2)

wheree(n) is the fullband error signal split in subbands to gener-
atee0i(n), andui(n) is the input vector to thei-th adaptive filter.

The recursion (2), with0 < � < 1, estimates the power ofui(n)
assuming that the channel signals are stationary. The range of val-
ues for the convergence factor is typically0 < � < 1=L.
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Figure 1: Delayless structure (closed loop).

3. EXCESS MSE

In this section, we estimate the excess MSE for the closed loop
scheme. The expression for the excess MSE for the open loop
scheme will not be presented, since it can be derived in a similar
manner.

From Fig. 1, the subband/wideband transformation can be
slightly modified, so that it can be interpreted as a synthesis of
the subband adaptive filters through a filter bank, as illustrated in
Fig. 2.

Now, let

P(z) =
NFDX
n=0

P(n)z�n (3)
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Figure 2: Filter bank representing the subband/fullband transfor-
mation.

be the polyphase matrix related to this filter bank and defineT as
theN � (N +M) matrix

T
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(4)
The wideband filter̂g(n) can then be expressed as

ĝ(n) = TBW(n)

= AW(n) (5)

where

W(n)
�
=
�

wT
0 (n) wT

1 (n) � � � wT
M�1(n)

�T
, (6)

A = TB andB is a(N+M)�(N+M) matrix with one and zero
entries that places the adaptive filter coefficients in an appropriate
form to the matrix multiplication.

The discarding-of-samples step is eliminated by starting the
convolution with the polyphase filters afterDint + 1 samples, as
can be observed from the first row ofT.

The fullband excess MSE can be expressed as [5]

Jexc(n) = tr[RK(n)] (7)

whereR is the correlation matrix of the inputX (n) andK(n) =

E[�ĝ(n)�ĝH(n)] is the covariance matrix of̂g(n). Using the
relation in Eq. (5), the excess MSE can be written as

Jexc(n) = tr[RE[�ĝ(n)�ĝH(n)]]

= tr[RAE[�W(n)�WH(n)]AH ]

= tr[AHRAE[�W(n)�WH(n)]]

= tr[E[AHX (n)XH(n)A]E[�W(n)�WH(n)]]

Note that the productAHX (n) represents the transpose of the syn-
thesis filter bank operation applied to the input signalX (n), i.e.,
it represents an analysis operation applied tox(n). Observing the
polyphase structure of this synthesis filter bank, we see that its cor-
responding prototype filter is practically the same as the one of the
analysis filter bank, as can be seen from their impulse responses
shown in Fig. 3 (the only difference is that the last polyphase

component now comes first). Hence, considering that the subband
signals and the adaptive coefficients are uncorrelated, this expres-
sion reduces to

Jexc(n) =
M�1X
i=0

tr[E[ui(n)uHi (n)]K i(n)] =

M�1X
i=0

Jexc(n)i

(8)
where the overall excess MSE is given by the sum of the excess
MSEsJexc(n)i in the subbands. Considering that we have a pro-
totype with good attenuation, this expression can be approximated
as [5]

Jexc(n) =
M�1X
i=0

�i�
2
ni
tr[Ri]

1� �itr[Ri]
(9)

where�2ni � �2n=M andRi = E[ui(n)uHi (n)].
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Figure 3: Prototype filters related toE(z) andP(z).

4. COMPUTATIONAL COMPLEXITY

Here, the computational complexity will be given in multiplies per
input sample, considering that the product of complex values is
implemented through 4 real multiplies.

The subband decomposition requires one convolution of aK-
length prototype filter and oneM -point FFT for each block ofM
input samples. Thus, the subband splitting requires

C1 = 2K=M + 2 log2M mult./sample (10)

for the two analysis filter banks.
Because of the symmetry of the IFFT for real signals, we only

have to process half of theM channel complex signals. Therefore,
we have to updateM=2 adaptive filters of lengthL = N=M + 1
for everyM input samples. Thus, the subband processing requires

C2 = 2N=M + 2 mult./sample (11)

For the open loop scheme we have to evaluate the adaptive filters
outputs, which requires an additionalC2 real multiplies per input
sample.

For the subband/wideband adaptive filters mapping, we have to
computeL IFFTs for the weights transformationwi(n)! w0

i(n)
and performM � 1 convolutions with the polyphase filters. In
practice, it is not necessary to evaluate the wideband filter for each
M input samples, because its output cannot vary much faster then
the length of its impulse response. The same idea was used in [2],
and we only need to perform the subband/wideband mapping for



MI input samples. The convergence behavior for different val-
ues ofI will be verified in the simulations. In this case, we will
show that by increasingI we can maintain the convergence rate
and also reduce the computational complexity of this part. Since
we need to evaluateN=M samples at the output of theM � 1
polyphase filtersEi(z), the computational complexity of the con-
volution is(M � 1)(N=M)min(K=M;N=M + 1). Considering
thatK=M � N=M + 1, i.e., the polyphase filters are shorter then
the adaptive filters, this part requires the complexity

C3 =

�
(N=M + 1) log

2
M +

NK(M � 1)

M3

�
1

I

The wideband convolution can be performed in the same way
described in [2] by partitioning the wideband filter inp segments
and using fast convolution techniques [6], [7]. In this case, the
number of multiplies per input sample is given by

C4 = N=p+ 2(p+ 1) log2(2N=p) + 4(p� 1). (12)

The number of segmentsp can also be optimized so that the
complexity over the direct convolution is minimized. Therefore,
the total computational complexity for the closed loop scheme is
C = C1 + C2 + C3 + C4, whereas for the open loop version we
countC2 twice.

In order to compare with the example presented in [2], consider
N = 512 taps,M = 32 subbands, and aK = 128 tap prototype
filter. In this case, Eq. (12) is optimized withp = 6. For the
structure of [2], when the wideband transformation was performed
for eachN input samples, the total computational load consists
of 401 multiplies per input sample in the case of the closed loop
configuration. This corresponds to a reduction by a factor of 2.5
in the computational complexity of the fullband LMS. The open
loop scheme required 529 multiplies per input sample, which cor-
responds to a reduction of 1.9. Note that the filter bank used in [2]
is oversampled byM=2, while here we use a maximally decimated
structure. For the proposed closed loop structure, calculating the
subband/wideband mapping for eachN input samples corresponds
to usingI = 16, and it givesC1 = 18, C2 = 34, C3 = 9 and
C4 = 218, with the total of 279 real multiplies per input sample.
For the open loop version we have one additionalC2 resulting in a
total of 313 real multiplies per input sample. We see that the com-
plexity over the fullband LMS is reduced by a factor of 3.7 for the
closed loop version and 3.5 for the open loop. UsingI = 1 gives
C3 = 147, and the total complexity of 417 multiplies/sample is
comparable to the one proposed in [2].

5. COMPUTER SIMULATIONS

The effect of increasing the factorI on the convergence behav-
ior can be observed in Fig. 4, where we used a white noise input
for a 64 tap unknown system, and an 8-channel filter bank with
a 64 prototype filter. The convergence factor� was chosen such
that a maximum convergence rate was achieved, while still pre-
serving stability. ForI ranging from 1 to 5 the convergence rate
does not change significantly. ForI = 8, we are actually updating
the wideband filter eachN input samples. In conclusion, we can
reduce the computational complexity by using higher values ofI
without reducing the convergence speed to the level of the fullband
LMS.

In order to verify the theorectical estimate of the MSE, we sim-
ulated the proposed structure using an additive noise of variance
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Figure 4: Effect of factorI in the MSE decay.I = 1,3,5,7,8.

�40 dB at the output with colored noise input signal. Table I
shows the results of some experiments for different values of the
number of subbandsM and the prototype lengthK. We notice
that these results are in good agreement with Eq. (9), provided
that we have designed a good prototype filter or a filter bank with
sufficient number of subbands.

Tests Theory Experiment
M = 8, K = 64 -37.5 dB -36.5 dB
M = 8, K = 128 -39.5 dB -39.5 dB
M = 16, K = 128 -39.5 dB -39.6 dB
M = 16, K = 256 -39.5 dB -39.5 dB

Table 1: Comparison of theorectical and measured MSEs

6. RELATION WITH BLOCK ADAPTIVE FILTERING

Consider a linear time invariant systemg(n) and its Wiener so-
lution resulted by the minimization of the error signal energy
E[je(n)j2]. A corresponding multichannel Wiener solution can
be derived by blocking the scalar input-output signal description,
as ilustrated in Fig. 5. In this case, for jointly-WSS signalsx(n)
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Figure 5: Equivalent input-output description.

andd(n), the optimal matrix filter obtained when we minimize the
block error signal cost function�bl = E[eH(n)e(n)] is given by
[4]

Go(z) = ~Sxd(z)S
�1

xx(z), (13)

whereSxx(z) and~Sxd(z) are the z-transforms of the autocorrela-
tion Rxx(k) = E[x(n)xH(n�k)] and crosscorrelationRxd(k) =
E[x(n)dH(n�k)], respectively. The tilde operator denotes trans-



pose, replacement ofz by z�1, and complex conjugate of the co-
efficients ofSxd(z).

The multichannel Wiener solution can be reached iteratively by
the block LMS algorithm given by

G(n+ 1) = G(n) + 2�X (n)eH(n), (14)

wheree(n) is the block error signal. The block LMS was pro-
posed by Sathe and Vaidyanathan for identification of bandlimited
channels [4]. In this reference, it is shown that for this type of
application, the input to the adaptive filter is in general cyclosta-
tionary. Thus, the use of a scalar adaptive filter for a cyclo-wide
sense stationary input with periodM ((CWSS)M) will not be op-
timal in terms of a Wiener solution. Since the blocking version
of a (CWSS)M input is a WSS vector, a matrix updating equation
defined by Eq. (14) is best suited for that type of application. The
problem concerning this scheme is that convolution and updating
of a(N +M)�M matrix must be performed, turning its compu-
tational complexity so high that its usefulness is limited.

However, this computational burden can be reduced by diag-
onalizing the matrixG(z) as in [3]. Fig. 6(a), illustrates this
procedure, where the transformed version of the blocked error
e(n), saye0(n), is used to update the matrix coefficients. Since
E(z) = Q�1(z), this scheme can be modified equivalently to
Fig. 6(b), where we still preserve the fullband error informa-
tion. In fact, this scheme represents the conventional closed loop
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Figure 6: Conventional closed loop structure.

subband structure, where the channel signals are reconstructed so
that we can evaluate the error signal in fullband. We can go fur-
ther, and instead of using a conventional subband structure, we
can use a delayless closed loop scheme for this aplication. Note
that the original matrix adaptive filter is a matrix polynomial of
lengthN=M + 1. This is in good agreement with the fact that
the adaptive filters in each subband should be able to represent the
unknown system (N=M length polyphase components) plus one
sample split in fractional delays when we perform the diagonal-
ization ofG(z).

The closed loop algorithm is updated by using the transformed
error vectore0(n), i.e., clearly, it minimizes the cost function
�cl = E[e0H(n)e0(n)]. LetSee(ej!) andSe’e’(e

j!) be the power
density spectrum of the vector processese(n) and e0(n). The
above equation can be written as

�cl =
1

2�

Z �

��

tr[Se’e’(e
j!)]d!

=
1

2�

Z �

��

tr[E(ej!)See(e
j!)EH(ej!)]d!

=
1

2�

Z �

��

tr[EH(ej!)E(ej!)See(e
j!)]d! (15)

SinceEH(ej!)E(ej!) = I , the term inside the trace becomes

�cl =
1

2�

Z �

��

M�1X
i=0

Seiei(e
j!)d! = E[eH(n)e(n)], (16)

which is�bl. In particular, for stationary signals we have

�cl = E[je(n)j2]. (17)

7. CONCLUSIONS

We have derived a simple expression for the excess MSE for the
delayless subband adaptive filter structure proposed in [3], and ver-
ified that the new structure can reduce in 3.7 times the computa-
tional complexity of the fullband LMS algorithm. We have shown
that the delayless strucuture can also be interpreted as a block
adaptive filtering structure, which presents low computational bur-
den when compared to the scheme proposed in [4].
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