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Abstract

In an envelope-constrained filtering problem with uncer-
tain input the set of possible inputs and the set of permissi-
ble outputs are each defined by envelopes or masks. This
paper considers a continuous-time filter which in structure
is comprised of an A/D converter, an FIR filter, a D/A con-
verter and an analog post-filter. The object is to design the
digital component of the filter structure so as to minimize
the noise enhancement whilst satisfying the constraint that
every signal in the input envelope evokes a response which
stays in the output envelope.

1. INTRODUCTION

The continuous-time envelope-constrained (EC) filtering
problem studied in [1-4], considers the design of a filter
which minimizes noise enhancement subject to the con-
straint that the noiseless response  of the filter to a spec-
ified excitation  fits into a prescribed envelope. Filter
design subject to envelope constraints has many applica-
tions, for example communications [5], radar/sonar detec-
tion, robust antenna and seismology [6].

Optimal EC filters, however, invariably lie on the bound-
ary of the feasible set and consequently any disturbance on
the input would violate the envelope constraints. To en-
force robustness to input disturbances, we consider the

more general case where the input  is not specified exact-
ly, but is known to lie within an input envelope described
by the upper and lower boundaries  and  as shown in
Figure 1 and seek a filter which forces all signals in the in-
put mask to stay within and . This problem is known
as envelope-constrained with uncertain input (ECUI).

Early work in ECUI filtering [7-8] only considers an ap-
proximation using discrete-time signals and FIR filters.
When the discrete-time outputs of these filters are convert-
ed to continuous-time, it is unlikely that these waveforms
would still fit in the output envelope. Furthermore, the
noise gains of these discrete-time filters are no longer opti-
mal due to this conversion. In this paper, we formulate the
(continuous-time) ECUI filtering problem for the hybrid
filter shown in Figure 2, and present, for the first time, a
novel technique to solve this problem.

2. PROBLEM FORMULATION

Consider the continuous-time filter realized using digital
techniques as shown in Figure 2. This filter structure was
also used in [4] for continuous-time EC filtering.

In what follows, it is assumed that the incoming signal is
sampled at or above the Nyquist rate. To simplify matters,
the quantization errors inherent in the A/D process are ne-
glected. This assumption ensures the linearity of the sys-
tem, since quantization is a non-linear operation.

2.1 Filter Output

Let  be vector of coefficients of
the FIR filter and  be the impulse response of the post-
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Figure  1. EC filtering with uncertain input.
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filter. It has been shown in [4] that the response of the hy-
brid filter to a signal  is given by

(1)

where  is the response of the
post-filter to the pulse , a rectangular pulse of length ,
defined by

.

In practice,  has a shape that closely approximates the
ideal rectangular pulse. Since we are only dealing with ex-
citation with support , the index  in (1) can be tak-
en from zero to infinity.

Assuming appropriate post-filtering such that (1) converg-
es for all  (e.g. Bounded Input Bounded Output
stability). Then,  is bounded and continuous on .
Suppose that the sampled input (finite support) is given by
the sequence . Then, (see [4])

(2)

where , ,

2.2 Output Noise Power

A simple cost function we could use for the optimization
is the Euclidean norm of the discrete-time filter. However,
unlike the discrete-time case [7], the output noise power
of this system is not directly proportional to this norm.
Assuming stationary input noise samples, it has been
shown in [4] that the output noise

is cyclostationary with period  and the average output
noise power is directly proportional to

(3)

where  is a positive definite matrix defined by

,

, .

2.3 Problem statement

Let  denote the set of possible input signals, i.e.

where ,  and  is the sup-
port of the input signals. Then we seek a minimum -
weighted-norm vector of filter coefficients such that the
filter output  evoked by every signal  in  satis-
fies

for all  on an interval . Thus, the ECUI filtering prob-
lem can be written as

(P.1-a)

where , .

3. SOLUTION METHOD

The description of the feasible region in terms of  is
adequate for characterizing the problem, but not particu-
larly useful for computational purposes. To evaluate the
feasibility of a filter, one would need to compute its re-
sponse to every signal  in the possible input set .
This is intractable and there is, apparently, no standard nu-
merical techniques for handling problems of this type. In
this section we present a novel technique for solving P.1-a
by transforming it into a QP problem with affine function-
al inequality constraints.

To solve the ECUI problem, it would be necessary to have
an equivalent but more explicit expression for the con-
straints of P.1-a which does not involve . Since the set of
possible input is completely characterized by  and , we
want an expression which would involve only , ,  and

. This is provided by the following result (the proof can
be found in [9]).
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,
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Thus P.1-a can be equivalently posed as

(P.1-b)

This is a finite-dimensional QP problem with functional
inequality constraints. It can be easily verified that the
constraint set for this problem is convex. Hence, P.1-b has
a unique solution since the cost function is strictly convex.
Note that P.1-b is a non-smooth problem and is difficult to
solve because of the non-differentiable term . However,
it can be converted to the following smooth problem with
twice as many dimensions.

(P.2)

subject to

where

,

 is an  identity matrix and .

Note that  is positive definite. To see this we call upon
Theorem 7.7.6 of [10], which asserts that for  to be pos-
itive definite, it is necessary and sufficient that

(4)

be positive definite. Let  be the eigen values of . Then
the eigen values of (4) are , .
Since , it is follows that (4) is positive
definite.

Problem P.2 is also a QP problem but with affine function-
al inequality constraints. Moreover, since the cost function
is strictly convex (because  is positive definite), this
problem has a unique solution (if one exists).

Theorem 3.2.If  and  are the optimal solution to
problems P.1 and P.2 respectively then .

This result establishes the equivalence of P.1 and P.2 by
stating the relationship between their respective solutions

 and  (see Appendix for proof). Problem P.2 can
easily be solved by approximating the continuum of con-
straints by a finite number of constraints as follows

Hence, it can be guaranteed that the envelope constraints
are satisfied at the instances  (if there
exists a feasible solution). This approximate problem is a
standard QP problem with a positive definite cost and can
be efficiently solved by well established algorithms such
as QP via active set strategy.

4. EXAMPLE

Consider the compression of a 13 bit barker coded signal
with an allowable error of 3% as shown in Figure 3 (a unit
on the time axis corresponds to one bit interval .) We re-

quire all responses to signals within this input mask to fit
in an output mask with allowable sidelobes of  and a
mainlobe peak of  as shown in Figure 4.

For this example we use a 27-tap FIR filter and a Bessel
post-filter of 6th order with cut-off frequency .
To obtain the approximate solution, we have constrained
the output at every . The noise gain of optimal
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Figure  3. 13 -bit Barker-coded signal with input mask
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Figure  4. Output mask and outputs of optimal filter
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ECUI filter is . Figure 4 also shows the
filter’s responses to signals which were randomly per-
turbed about the nominal input but still fit inside the input
mask. Observe that these responses stay within the bound-
ary of the output envelope.

5. CONCLUSIONS

Proposed in this note is a continuous-time filter which
consists of an A/D converter, an FIR filter, a D/A convert-
er and an analog post-filter for envelope constrained filter-
ing with input uncertainty. It has been shown that the
original ECUI problem can be converted into a QP prob-
lem with affine functional inequality constraints. This
novel transformation thus allows the seemingly intractable
ECUI problem to be solved in a straightforward manner
using well established numerical routines such as QP via
active set strategy. The technique has been successfully
applied to a radar pulse compression example as demon-
strated by the numerical study.

6. APPENDIX

Lemma. Let  and  be the mappings defined by

.

Then,

   (i) .
   (ii) .
   (iii) .
   (iv) .
   (v) for each  with  there exists a unique

non-negative function  such that

Parts (i)-(iv) is straight forward. For part (v), it suffices to define

.

Proof of Theorem 3.2.

Suppose  is the optimal solution of P.2. Let
and  so that  and

. Then

. (5)

Let , . By (ii) and (iii)

Moreover, from (i)  and by (iv)-(v) we have

that is  satisfies the constraints of P.2. Hence by the
optimality of ,

and thus using (5) yields .

Since , from (v) we have

hence  satisfies the envelope constraints. Now for any  sat-
isfying the envelope constraints, by (iii) and (iv)

This together with (i) means  satisfies the con-
straints of P.2. By the optimality of , (ii) and (iii) we arrive at

Thus  is the optimal solution of P.1.❐
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