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ABSTRACT

In this paper, we consider the problem of estimating the fre-
quency of a sinusoidal signal whose amplitude could be ei-
ther constant or time-varying. We present a nonlinear least-
squares (NLS) approach when the envelope is time-varying.
We show that the NLS estimator can be efficiently imple-
mented using a FFT. A statistical analysis shows that the NLS
frequency estimator is nearly efficient. The problem of de-
tecting amplitude time variations is next addressed. A sta-
tistical test is formulated, based on the statistics of the dif-
ference between two frequency estimates. The test is com-
putationally efficient and yields as a by-product consistent
frequency estimates under either hypothesis (i.e. constant or
time-varying amplitude). Numerical examples are included
to show the performance in terms of both estimation and de-
tection.

1. INTRODUCTION

Estimating the parameters of sinusoidal signals with time-
varying amplitude has been the topic of numerous studies in
recent years (see e.g. [1]-[2] and references therein). This
type of models proves to be relevant in many signal process-
ing applications, such as precipitation and wind field veloc-
ity measurement via weather radar or lidar and vehicle speed
determination by means of a Doppler radar (see [1]-[2] for
details). For these and other applications the signal is well-
described by the following equation:

y(t) = �x(t)ei!0t + e(t) t = 0; 1; 2; ::: (1)

where� is a complex-valued amplitude,x(t) is a real-valued
time-varying envelope, !0 is the frequency, and e(t) is a dis-
turbance. In general, the parameter of interest is!0, the time-
varying amplitude being considered as a nuisance, i.e. a mul-
tiplicative noise.

This paper is concerned with the application of the Non-
linear Least-Squares (NLS) approach to the model (1) with
the following two goals:

Estimation. NLS frequency estimation has gained renewed
interest in recent years [3] because of its computational
simplicity (at least when a single frequency is sought,

which is the case considered herein), its robustness to
mismodelling the additive noise and its statistical ac-
curacy whatever the hypothesismade on the noise (e.g.
white or colored). Herein, we consider the application
of the NLS approach to estimate !0 in (1).

Detection. In the above mentioned problems, the multiplica-
tive model (1) has been proposed as an alternative to
the usual model of a constant-amplitudesinusoidal sig-
nal in noise with the goal of obtaining a better rep-
resentation of the physical phenomena giving rise to
the observed signal. However, in many cases, the sig-
nal departs only slightly from the constant amplitude
case, that is x(t) in (1) is only slowly varying. There-
fore a key issue, prior to or in conjunction with fre-
quency estimation, is to decide whether the amplitude
is time-varying or constant. In this paper, we present a
conceptually simple and computationally efficient test
for this detection problem.

2. NLS FREQUENCY ESTIMATION

In this section we present a NLS approach to estimate !0 (as
well as � and fx(t)g). In this approach, the estimates are ob-
tained as the minimizing arguments of the following crite-
rion

N�1X
t=0

��y(t) � �x(t)ei!t
��2 (2)

whereN denotes the number of available data samples. It is
well known that ifx(t)were constant (i.e. x(t) � 1) then the
estimate of !0 obtained by minimizing (2) would be given
by the location of the highest peak of the data periodogram:

b!(0)
0 = argmax

!

1

N

�����
N�1X
t=0

y(t)e�i!t

�����
2

(3)

In the more general case in which x(t) is time-varying and
unknown we have the following:



Proposition 1 The NLS estimate of !0 that minimizes (2) is
given by

b!(1)
0 = argmax

!

1

N

�����
N�1X
t=0

y2(t)e�i2!t

�����
2

(4)

Proof: see [4].
To obtain (4) we assume that

PN�1
t=0 x2(t) = 1 and that

!0 � �=2 ; otherwise, the signal model in (1) is ambiguous.
Note that (4) can be obtained by dividing by two the peak
location of the FFT (with possibly zero-padding) of y2(t).
Interestingly enough, the NLS frequency estimator (4) has
been used, on more or less heuristical grounds, in the com-
munication literature where it is referred to as “squaring loop”
(see [5, chapter 6]).

We now analyze the performance of the NLS frequency
estimator. The following proposition gives the asymptotic
(i.e. large sample) variance of the estimate (4).

Proposition 2 Under the assumption thatx(t) in (1) is a Gaus-
sian stationaryprocess and thate(t) is a white circular Gaus-
sian noise with zero mean and variance �2e , the asymptotic

variance of N3=2
�b!(1)

0 � !0

�
is given by:

lim
N!1

N3E
�b!(1)

0 � !0

�2
=

6

SNR1

�
1 +

1

2
SNR�11

�
(5)

where SNR1 = E
h
j�j2 x2(t)

i
=�2e .

Proof: see [4]

Remark 1 We note that the Cramér-Rao Bound for the prob-
lem at hand is given in the highSNR case and under the as-
sumption that x(t) obeys a finitely-dimensional parametric
model by [6]:

CRB =
1

N3

6

SNR1
(6)

Hence the variance of the NLS frequency estimator can be
quite close to the CRB, at least for a sufficiently high Signal
to Noise Ratio. Observe that, in contrast to (6), the variance
expression (5) for the NLS frequency estimate does not rely
on a specific model for the envelope.

3. NLS-BASED DETECTION

As indicated in the introduction, it is of major interest to de-
cide between the followingtwo hypotheses, using a data sam-
ple of length N :

H0 : y(t) = Aei!0t + e(t)

H1 : y(t) = �x(t)ei!0t + e(t) (7)

Deciding between H0 andH1 in (7) is a binary hypoth-
esis problem, which could be solved in an optimal manner
e.g. by using a Likelihood Ratio Test (LRT) [7]. However,
a LRT would require further assumptions on the structure

of x(t). Such assumptions would seldomly be met in prac-
tice; anyway, the LRT would be optimal only in a certain
class of envelopes. Finally, the computational burden asso-
ciated with the LRT is generally high. A test different from
LRT was derived in [8] but it is still rather involved com-
putationally. In contrast, we are interested in deriving a test
which 1) should be computationally simple 2) should pro-
vide, as a by-product, accurate frequency estimates and 3)
should be robust to mismodelling the envelope. Our detec-
tion scheme relies on the following observation. UnderH0,
both b!(0)

0 and b!(1)
0 provide consistent (and efficient or nearly

efficient) estimates of the frequency. In contrast, underH1,
only b!(1)

0 will have this property. In fact, underH1, b!(0)
0 is

likely to be asymptotically biased (depending on the type of
variation of x(t)) and will thus be quite different from b!(1)

0 .

Hence, the difference
�b!(1)

0 � b!(0)
0

�
can serve as a good in-

dicator of whether the amplitude is constant or time-varying.
We now formalize the previous idea. The followingpropo-

sition is needed to derive the test.

Proposition 3 UnderH0, the vector

N3=2b! def
= N3=2

 b!(0)
0 � !0b!(1)
0 � !0

!
is asymptotically Gaus-

sian distributedwith zero-mean and covariance matrix given
by

lim
N!1

N3E
�b!b!T	 =

6

SNR0

�
1 1
1 1 + 1

2SNR�10

�
(8)

where SNR0 = jAj2 =�2e .

Proof: see [4].
A simple consequence of Proposition 3 is:

Corollary 1 UnderH0, we have

N3=2
�b!(1)

0 � b!(0)
0

�
as
� N (0; 3� SNR�20 ) (9)

where
as
� means asymptotically distributed.

Hence, under H0, T
def
= N3

�b!(1)
0 � b!(0)

0

�2
SNR2

0=3

is asymptoticallyX 2(1). This property can be used to obtain
a statistical test. This test will have a Probability of False
Alarm as defined by

PFA = Pr fT > 
 jH0g (10)

where the threshold 
 is used to control the value of PFA.
To summarize, the detection scheme proposed is as follows.

Outline of the detection scheme

Step 1 From aX 2(1) table, obtain the threshold
 for a given
PFA.



Step 2 Compute the frequency estimates b!(0)
0 and b!(1)

0 , as
given by (3) and (4). Obtain the NLS estimates of A
and �2e as

bA(0) =
1

N

N�1X
t=0

y(t)e�ib!
(0)
0 t (11)

b�2(0)e =
1

N

N�1X
t=0

���y(t) � bA(0)eib!
(0)
0 t
���2 (12)

Step 3 Compute an estimate bT of T :

bT =
N3
��� bA(0)

���4
3b�4(0)e

�b!(1)
0 � b!(0)

0

�2
(13)

Step 4 If bT < 
, accept H0. Otherwise, accept H1.

Note that, onceH0 (resp. H1) is accepted, a correspond-
ing frequency estimate is already available: b!(0)

0 (resp. b!(1)
0 ).

Remark 2 It should be noted that underH1, b�2(0)e as given
by (12) could be quite large (since b!(0)

0 is poor). This in turn
decreases bT and hence the chance to detectH1. In order to
remedy this problem, we propose to use the following esti-
mator of �2e:

b�2(1)e =
1

N

 
N�1X
t=0

jy(t)j2 �

�����
N�1X
t=0

y2(t)e�i2b!
(1)
0 t

�����
!

(14)

The estimator (14), which corresponds to the NLS esti-
mate of �2e under H1, is a consistent estimate of �2e under
H0 as well. Comparing (12) and (14) and noting that (4) is
already available, an alternative way to estimate jAj is given
by:

��� bA(1)
���2 =

1

N

�����
N�1X
t=0

y2(t)e�i2b!
(1)
0 t

����� (15)

4. NUMERICAL EXAMPLES

In this section, we illustrate the performance of the proposed
estimation and detection methods. We begin with the NLS
frequency estimator. Let us consider a signal as generated
by equation (1) where: � = 1, !0 = 2� � 0:18, and e(t)
is a white noise with zero mean and variance �2e. The enve-
lope x(t) is a real-valued second-order autoregression with
variance �2x and poles at �e�i2�f . The signal to noise ra-
tio is chosen as SNR1 = �2x=�

2
e = 20dB. We ran 1000

Monte-Carlo simulations to estimate the mean squared er-
rors (MSE) of the frequency estimate proposed here. The
so-obtained MSE values, along with the CRB are shown in
Figures 1 and 2 for varying N and f , respectively.
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Figure 1: CRB and MSE of the frequency estimator versus
the number of samples. � = 0:95 and f = 0:01.
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Figure 2: CRB and MSE of the frequency estimator versus
the AR(2) pole frequency. � = 0:95 and N = 128.

Despite the fact that our simple semi-parametric estima-
tor does not use any information about the envelope, its per-
formance is seen to get quite close to the parametric CRB.

The performance of the proposed detection test is now
illustrated. It will be measured by PFA and the Probability
of Miss defined by

PM = Pr fT < 
 jH1g (16)

Two variants of the detection scheme were tested, which
correspond to different estimates of A and �2e :

Variant 1: A is estimated as in (11) and �2e by (12).

Variant 2: A is estimated as in (15) and �2e by (14).

We begin with illustrating the false alarm performances.
To this end, 5000 Monte-Carlo simulations were run in each
case considered. The signal was generated according to (7)



where A = ej' and ' 2 [0; 2�] is fixed in each simulation
set. The Signal to Noise Ratio is defined as before: SNR0 =

jAj2 =�2e. The frequency is given by !0 = 2� � f0 = 2��
0:18. The theoretical PFA is 0 :01 . Tables 1 and 2 show the
empirical PFA’s obtained from Monte-Carlo simulations, as
a function of N and SNR0.

These tables indicate that the test performs as predicted
by the theory, at least when a sufficient number of samples
is available (typically N > 64). Additionally, the perfor-
mance remains stable over a wide range ofSNR0’s. Finally,
we note that PFA is only slightly increased when variant 2
is used.

Next, we illustrate the performance of the proposed test
in terms of the miss probability. We consider the same ex-
ample as before for the time-varying amplitude case. We ran
5000 Monte-Carlo simulations to estimate PM for PFA =
0:01. Figures 3 and 4 display the empirical PM as a function
of N and f . Some remarks on these figures are in order:

� A considerable improvement is achieved when using
variant 2 compared to variant 1, in all cases tested.

� As the bandwidth of the envelope increases, PM de-
creases, which is a logical behavior. The result of the
test essentially depends on the ratio between the en-
velope bandwidth and the center frequency f0. Also,
the fact that PM may not be negligible for small val-
ues of f (even though it is quite small for variant 2) is
not a real problem. Indeed, when the envelope varies
very slowly, the conventional constant amplitude fre-
quency estimators are quite accurate.
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Figure 3: Probability of miss versus N . f0 = 0:18, � =
0:95, f = 0:01 and SNR1 = 20dB.
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Figure 4: Probabilityof miss versus f . � = 0:95, f0 = 0:18,
N = 512 and SNR1 = 20dB.

N Variant 1 Variant 2
64 0:012 0:0168
128 0:0106 0:013
256 0:0104 0:0128
512 0:0092 0:0108
1024 0:0118 0:012

Table 1: Empirical PFA versus N . SNR0 = 10dB.

SNR0(dB) Variant 1 Variant 2
0 0:017 0:0234
5 0:0128 0:0136
10 0:0094 0:0122
15 0:0122 0:0152
20 0:0088 0:011
25 0:0088 0:0112

Table 2: Empirical PFA versus SNR0. N = 128.


