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ABSTRACT

In this paper, we consider the problem of estimating the fre-
guency of a sinusoidal signal whose amplitude could be ei-
ther constant or time-varying. We present a nonlinear least-
squares (NLS) approach when the envelopeistime-varying.
We show that the NLS estimator can be efficiently imple-
mented usingaFFT. A statistical analysisshowsthattheNLS
frequency estimator is nearly efficient. The problem of de-
tecting amplitude time variationsis next addressed. A sta-
tistical test is formulated, based on the statistics of the dif-
ference between two frequency estimates. The test is com-
putationally efficient and yields as a by-product consistent
frequency estimates under either hypothesis(i.e. constant or
time-varying amplitude). Numerical examples are included
to show the performancein terms of both estimation and de-
tection.

1. INTRODUCTION

Estimating the parameters of sinusoida signals with time-
varying amplitude has been the topic of numerous studiesin
recent years (see eg. [1]-[2] and references therein). This
type of modelsprovesto berelevant in many signal process-
ing applications, such as precipitation and wind field veloc-
ity measurement viaweather radar or lidar and vehicle speed
determination by means of a Doppler radar (see [1]-[2] for
details). For these and other applicationsthe signal iswell-
described by the following equation:

y(t) = ax(t)e™ " +e(t) t=0,1,2,.. (@D}

wherea isacomplex-valued amplitude, x(t) isareal-valued
time-varying envelope, wy isthefrequency, ande(t) isadis-
turbance. Ingenera, theparameter of interestiswg, thetime-
varying amplitudebeing considered asanuisance, i.e. amul-
tiplicativenoise.

This paper is concerned with the application of the Non-
linear Least-Squares (NLS) approach to the model (1) with
the following two goals:

Estimation. NLSfrequency estimation hasgained renewed
interestinrecent years[ 3] because of itscomputational
simplicity (at least when asingle frequency is sought,
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which isthe case considered herein), itsrobustnessto
mismodelling the additive noise and its statistical ac-
curacy whatever the hypothesismade onthenoise(e.g.
whiteor colored). Herein, we consider theapplication
of the NLS approach to estimate wg in (1).

Detection. Intheabovementioned problems, themultiplica
tive model (1) has been proposed as an aternative to
theusual modd of aconstant-amplitudesinusoidal sig-
nal in noise with the god of obtaining a better rep-
resentation of the physical phenomena giving rise to
the observed signal. However, in many cases, thesig-
nal departs only slightly from the constant amplitude
case, that isz(¢) in (1) isonly slowly varying. There-
fore a key issue, prior to or in conjunction with fre-
guency estimation, isto decide whether theamplitude
istime-varyingor constant. Inthispaper, wepresent a
conceptually simpleand computational ly efficient test
for this detection problem.

2. NLSFREQUENCY ESTIMATION

In thissection we present aNL S approach to estimate w, (as
well asa and {z(t) }). Inthisapproach, theestimates are ob-
tained as the minimizing arguments of the following crite-
rion
N-1
iwt |2
> fu(t) —aw(t)e™] (2

t=0

where N denotes the number of available datasamples. Itis
well knownthat if z(¢) wereconstant (i.e. z(¢) = 1) thenthe
estimate of w, obtained by minimizing (2) would be given
by the location of the highest peak of the data periodogram:

N—1 2

Z y(t)e—iwt

t=0

o\ = arg max S
0
w N
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In the more general case in which z(¢) istime-varying and
unknown we have the following:



Proposition 1 The NLSestimate of wq that minimizes(2) is
given by

N—1 2

Z yZ (t)e—iZwt

t=0

@(()1) — argmax —
w N

(4)

Proof: see[4].

To obtain (4) we assumethat S, ! 2?(¢) = 1 and that
wo < 7/2; otherwise, thesigna model in (1) isambiguous.
Note that (4) can be obtained by dividing by two the peak
location of the FFT (with possibly zero-padding) of y?(¢).
Interestingly enough, the NLS frequency estimator (4) has
been used, on more or less heuristical grounds, in the com-

munication literaturewhereitisreferred to as* squaring loop”

(see[5, chapter 6]).

We now analyze the performance of the NL S frequency
estimator. The following proposition gives the asymptotic
(i.e. large sample) variance of the estimate (4).

Proposition 2 Under theassumptionthat «(¢) in(1) isaGaus-

sianstationaryprocess andthat (¢) isawhitecircular Gaus-
sian noise with zero mean and variance o2, the asymptotic

variance of N3/2 (@él) - wo) isgiven by:

. 3 ~(1) i 2 _ 6 l —1
J\;gl})oN S(wo wo) = SVR, [I—I-QSNRl
()

where SNRy = € [|a|2 xz(t)} /o2

Proof: see[4]

Remark 1 Wenotethatthe Cramér-Rao Bound for theprob-
lemat handisgiveninthehigh SN R case and under theas-
sumption that «(¢) obeys a finitely-dimensional parametric
model by [6]: . ;

~ N3SNR; ©)

Hence the variance of the NLS frequency estimator can be
quite close to the CRB, at least for a sufficiently high Sgnal
to Noise Ratio. Observe that, in contrast to (6), thevariance
expression (5) for the NLS frequency estimate does not rely
on a specific model for the envelope.

CRB

3. NLS-BASED DETECTION

Asindicated intheintroduction, it is of mgjor interest to de-
cidebetween thefoll owingtwo hypotheses, using adatasam-
pleof length N :

H, : y(t) = Ae™ot 4 e(t)
H, y(t) = ax(t)e™ +e(t) (7
Deciding between Hy and H; in (7) isabinary hypoth-
esis problem, which could be solved in an optimal manner

e.g. by using aLikelihood Ratio Test (LRT) [7]. However,
a LRT would require further assumptions on the structure

of x(t). Such assumptions would seldomly be met in prac-
tice; anyway, the LRT would be optimal only in a certain
class of envelopes. Finally, the computationa burden asso-
ciated with the LRT isgenerally high. A test different from
LRT was derived in [8] but it is still rather involved com-
putationally. In contrast, we are interested in deriving a test
which 1) should be computationaly simple 2) should pro-
vide, as a by-product, accurate frequency estimates and 3)
should be robust to mismodelling the envelope. Our detec-
tion scheme relies on the following observation. Under Hy,
both{” and@ (" provideconsistent (and efficient or nearly
efficient) estimates of the frequency. In contrast, under H, ,
only @él) will have this property. Infact, under H, @éo) is
likely to be asymptotically biased (depending on the type of
variation of «(¢)) and will thus be quite different from @él) .
Hence, thedifference @él) - @80) can serveasagood in-
dicator of whether theamplitudeisconstant or time-varying.
Wenow formalizethepreviousidea. Thefollowingpropo-
sitionis needed to derive the test.

Proposition 3 Under Hy, the vector
~5(0) _
N3/2g 4 N3z [ Yo T Y0 ) s asymptotically Gaus-
(:)(()1) — Wy
sian distributed with zero-mean and covariance matrix given
by

lim N3E{G&T} =

N—oo

6 1 1
SNRy \ 1 1+ iSNR;!
, (8)
where SN Ry = |A|” /o2,

Proof: see[4].
A simple consegquence of Proposition 3is:

Corollary 1 Under Hy, we have
N3 (D)~ o) BN, 3xSNRZY) (9)

where = means asymptotically distributed.

2
Hence, under Hy, 7 % N3 (@él) - @éo)) SNR2/3

isasymptotically X'%(1). Thisproperty can beusedto obtain
a statistical test. This test will have a Probability of False
Alarm as defined by

PFAIPI'{T>’)/|H0} (10)

where the threshold ~ is used to control the value of Pr 4.
To summarize, the detection scheme proposed isas follows.

Outline of the detection scheme

Step 1 FromaX'?(1) table, obtainthethreshold~ for agiven
PFA-



Step 2 Compute the frequency estimates 5" and (", as
given by (3) and (4). Obtain the NLS estimates of A
2

ando; as
N-1
A0 = L y(t)e—i@éu)t (12)
N
t=0
~og0) _ 1 R, (0),ia®@¢|?
5200 = = 37 [y(e) - A (12)
t=0
Step 3 Compute an estimate 7 of 7~
o~ 4
ve |4
7 ~(1) _ ~(0)
=0 (&7 -2") @3

Step 4 If7 < ~, accept Hy. Otherwise, accept H; .
Notethat, once H, (resp. H; ) isaccepted, acorrespond-

ingfrequency estimateisalready available: G\ (resp. G§V).

Remark 2 It should be noted that under Hy, 72*) asgiven
by (12) could bequitelarge (s nceaéo) ispoor). Thisinturn
decreases 7 and hence the chance to detect H, . In order to

remedy this problem, we propose to use the following esti-
mator of o2

1 N-1 N-1 )
%W:N(waﬁ—ZfoW“)(m
t=0 t=0

The estimator (14), which corresponds to the NLS esti-
mate of o2 under Hy, is a consistent estimate of o under
H, aswell. Comparing (12) and (14) and noting that (4) is
already available, an alternativeway to estimate | A| isgiven
by:

N-1

> (e

t=0

= (15)

A0 = 5

N

4. NUMERICAL EXAMPLES

In thissection, weillustratethe performance of the proposed
estimation and detection methods. We begin with the NLS
frequency estimator. Let us consider a signal as generated
by equation (1) where: & = 1, wg = 27 x 0.18, and e(¥)
is awhite noise with zero mean and variance o2. The enve-
lope () is areal-valued second-order autoregression with
variance o2 and poles at pe*2™/. The signd to noise ra-
tioischosenas SNR; = ¢2/0? = 20dB. Weran 1000
Monte-Carlo simulations to estimate the mean squared er-
rors (MSE) of the frequency estimate proposed here. The
so-obtained M SE values, aong with the CRB are shown in
Figures1 and 2 for varying NV and £, respectively.
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Figure 1: CRB and MSE of the frequency estimator versus
the number of samples. p = 0.95and f = 0.01.
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Figure 2: CRB and M SE of the frequency estimator versus
the AR(2) polefrequency. p = 0.95and N = 128.

Despite the fact that our simple semi-parametric estima-
tor does not use any information about the envel ope, its per-
formance is seen to get quite close to the parametric CRB.

The performance of the proposed detection test is now
illustrated. It will be measured by Pr 4 and the Probability
of Miss defined by

Py =Pr {7 <~ |Hi} (16)

Two variantsof the detection scheme weretested, which
correspond to different estimates of A and o'2:

Variant 1: A isestimated asin (11) and o2 by (12).
Variant 2: A isestimated asin (15) and o2 by (14).

We begin withillustrating the fal se alarm performances.
To thisend, 5000 Monte-Carlo simulationswererunin each
case considered. The signal was generated according to (7)



where A = ¢/¥ and ¢ € [0, 2] isfixed in each smulation
set. The Signa toNoiseRatioisdefined asbefore: SN Ry =
|A|* /2. The frequency isgiven by wy = 27 x fo = 27 X
0.18. Thetheoretical Pra4 is(.01. Tables 1 and 2 show the
empirical Pr 4’ sobtained from Monte-Carlo simulations, as
afunctionof N and SN Ry.

These tables indicate that the test performs as predicted
by the theory, at least when a sufficient number of samples
is avalable (typicadlly N > 64). Additiondly, the perfor-
mance remainsstableover awiderangeof SN Ry’s. Finally,
we notethat Pr 4 isonly dightly increased when variant 2
isused.

Next, we illustrate the performance of the proposed test
in terms of the miss probability. We consider the same ex-
ampleas beforefor thetime-varyingamplitudecase. Weran
5000 Monte-Carlo simulations to estimate Py for Py =
0.01. Figures3and 4 display theempirical Pyr asafunction
of N and f. Some remarks on these figures are in order:

¢ A considerable improvement is achieved when using
variant 2 compared to variant 1, in al cases tested.

¢ Asthe bandwidth of the envelope increases, Pys de-
creases, which isalogica behavior. The result of the
test essentially depends on the ratio between the en-
velope bandwidth and the center frequency fi,. Also,
the fact that P5;r may not be negligiblefor small val-
uesof f (eventhoughitisquitesmall for variant 2) is
not area problem. Indeed, when the envelope varies
very sowly, the conventional constant amplitude fre-
guency estimators are quite accurate.
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Figure 3: Probability of missversus N. f, = 0.18,p =
0.95,f =0.01 and SN Ry = 20dB.
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Figure4: Probability of missversus f. p = 0.95, fy = 0.18,
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N =512and SN R, = 20dB.

N Variant 1 | Variant 2
64 0.012 0.0168
128 0.0106 0.013
256 0.0104 0.0128
512 0.0092 0.0108
1024 0.0118 0.012

Table 1: Empirical Prpy versus N. SN Ry = 10dB.

SN Ry(dB) | Variant 1 | Variant 2
0 0.017 0.0234
5 0.0128 0.0136
10 0.0094 0.0122
15 0.0122 0.0152
20 0.0088 0.011
25 0.0088 0.0112

Table 2: Empirical Prpy versus SN Rg. N = 128.



