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ABSTRACT

In this paper, an e�cient Weighted Fourier transform
and RELAXation based algorithm (referred to as WRE-
LAX) is �rst proposed for the well-known time delay es-
timation problem. WRELAX involves only a sequence
of weighted Fourier transforms. Its resolution is much
higher than that of the conventional matched �lter ap-
proach. One disadvantage associated with WRELAX is
that it converges slowly when the signals are spaced very
closely. To overcome this problem, the well-known high
resolution MODE (Method of Direction Estimation) algo-
rithm, which was originally proposed for angle estimation in
array processing, is modi�ed and used with WRELAX for
super resolution time delay estimation. The latter method
is referred to as MODE-WRELAX. MODE-WRELAX pro-
vides better accuracy than MODE and higher resolution
than WRELAX. Moreover, it applies to both complex- and
real-valued signals (including those with highly oscillatory
correlation functions). Numerical results show that the
MODE-WRELAX estimates can approach the correspond-
ing the Cram�er-Rao bounds.

1. INTRODUCTION

Time delay estimation is a well-known problem that oc-
curs frequently in sonar, radar, geophysical/seismic explo-
ration, radio positioning and navigation. In this paper, we
consider estimating time delays and amplitudes (real- or
complex-valued) from the superposition of multiple signals
with known shapes. The matched �lter approach is the sim-
plest method for this problem. However, it cannot resolve
two signals with a time spacing less than the reciprocal of
the signal bandwidth. Based on the observation that the
frequency domain data model of this time delay estimation
problem is similar to those used for the sinusoidal parame-
ter and angle estimation problems except that the complex
exponentials are weighted by the known signal spectrum,
many existing sinusoidal frequency and angle estimation al-
gorithms, such as MUSIC, linear prediction, and maximum
likelihood, are applied to this problem [1, 2, 3]. However,
they are best suited for complex-valued signals with special
shapes (such as 
at band-limited spectrum). A computa-
tionally e�cient approach based on the expectation maxi-
mization (EM) algorithm is proposed in [4]. However, the
EM method is very sensitive to initial conditions and no
systematic initialization method is given in [4]. The sepa-
ration of multipaths from real-valued bandpass underwater
acoustic signals with highly oscillatory correlation functions
is a very challenging issue and is addressed in [5, 6, 7]. The
algorithms proposed in [5, 6, 7] are all based on the min-

imization of a nonlinear least squares (NLS) criterion and
all of them resort to computationally demanding multidi-
mensional search over the parameter space. In this paper,
we present e�cient super resolution time delay estimation
algorithms that apply to complex-valued signals as well as
real-valued signals (including those with highly oscillatory
correlation functions).

2. MODEL DESCRIPTION

The time delay estimation data model considered in this
paper has the following general form:

y(nTs) =

LX
l=1

�ls(nTs��l)+e(nTs); 0 � n � N�1; (1)

where Ts denotes the sampling interval, s(nTs), represents
an arbitrary known transmitted signal , y(nTs) denotes the
received signal, which is composed of L replicas of s(nTs)
with di�erent amplitudes f�lg

L
l=1 and delays f�lg

L
l=1, and

e(nTs) is the additive noise, which is modeled as a zero-
mean white Gaussian random process. Without loss of gen-
erality, we assume that s(nTs), y(nTs), e(nTs), and f�lgLl=1
are either all complex-valued or all real-valued.
Our problem of interest herein is to estimate f�l; �lg

L
l=1

from fy(nTs)g
N�1
n=0 with known fs(nTs)g

N�1
n=0 when the sig-

nals are very closely spaced.
Although we could solve the estimation problem in the

time domain [4, 5, 7, 8], we prefer to do it in the frequency
domain. This is because for the time domain processing
methods, we could be restricted to using the discrete values
of f�lg

L
l=1 if we only know the sampled version of s(t). For

this case, if a more accurate delay estimate is required, then
one has to resort to interpolation [5]. This inconvinence can
be avoided by transforming the problem into the frequency
domain, where f�lg

L
l=1 can take on a continuum of values.

Let Y (k), S(k), and E(k), k = �N=2;�N=2+1; :::;N=2�1,
denote the discrete Fourier transforms (DFT's) of y(nTs),
s(nTs), and e(nTs), respectively. Provided that aliasing is
negligible, then Y (k) can be written as:

Y (k) = S(k)

LX
l=1

�le
j!lk +E(k); (2)

where

!l = �
2��l
NTs

: (3)



3. THE WRELAX ALGORITHM

3.1. WRELAX for Complex-Valued Signals

Let Y 2 CN�1, E 2 CN�1, and � 2 CL�1 denote the vec-

tors formed by fY (k)gN=2�1
k=�N=2, fE(k)g

N=2�1
k=�N=2, f�lg

L
l=1, re-

spectively, and let S 2 CN�N denote a diagonal matrix

with fS(k)gN=2�1
k=�N=2 as its diagonal elements. Then the data

model (2) can be written in the following vector form:

Y = SA�+E; (4)

where

A = [ a(!1) a(!2) � � � a(!L) ]
T
; (5)

with

a(!l) =
�
ej!l(�

N

2
) ej!l(�

N

2
+1) � � � ej!l(

N

2
�1)

�T
;

(6)
and (�)T denotes the transpose.
WRELAX is a relaxation-based minimizer of the follow-

ing nonlinear least-squares (NLS) criterion:

C1(f�l; !lg
L
l=1) =k Y �

LX
l=1

�lSa(!l) k
2 : (7)

When e(nTs) is a zero-mean white Gaussian random pro-
cess, E(k) is also white since DFT is a unitary transforma-
tion. For this white noise case, the NLS approach is the
same as the maximum likelihood (ML) method.
Before we present the WRELAX algorithm, let us con-

sider the following preparations. Let

Yl = Y �

LX
i=1;i6=l

�̂i[Sa(!̂i)]; (8)

where f�̂i; !̂igi=1;i6=l are assumed to be given . Then (7)
becomes

C2(�l; !l) =k Y � �lSa(!l) k
2 : (9)

Minimizing C2(�l; !l) with respect to !l and the complex-
valued �l yields

!̂l = argmax
!l

��aH(!l)(S�Yl)
��2 ; (10)

and

�̂l =
aH(!l)(S

�Yl)

k S k2F

����
!l=!̂l

; (11)

where (�)H, (�)�, and k � kF denote the conjugate transpose,
complex conjugate, and the Frobenius norm.
With the above simple preparations, we now present the

WRELAX algorithm.
Step (1): Assume L = 1. Obtain f!̂l; �̂lgl=1 from Y by

using (10) and (11).
Step (2): Assume L = 2. Compute Y2 with (8) by

using f!̂l; �̂lgl=1 obtained in Step (1). Obtain f!̂l; �̂lgl=2
from Y2. Next, compute Y1 by using f!̂l; �̂lgl=2 and then
redetermine f!̂l; �̂lgl=1 from Y1.
Iterate the previous two substeps until \practical conver-

gence" is achieved (to be discussed later on).
Remaining Steps: Continue similarly until L is equal

to the desired or estimated number of signals.

The \practical convergence" in the iterations of the above
WRELAX algorithm may be determined by checking the
relative change of the cost function C1(f!̂l; �̂lg

L
l=1) in (7)

between two consecutive iterations.
Once f!̂lg

L
l=1 are determined, the delay estimates f�̂lg

L
l=1

of f�lg
L
l=1 can be computed by using (3) with f!lg

L
l=1 re-

placed by f!̂lg
L
l=1.

3.2. WRELAX for Real-Valued Signals

Consider the data model expressed by (2). When the sig-
nals s(t), y(t), and e(t) are all real-valued, their Fourier
transforms are conjugate symmetric, hence we can use only

fY (k)gN=2�1k=0 to estimate the time delays and amplitudes
without any performance degradation. De�ne

W = diag
�

W (0); W (1); � � � ; W (N
2 � 1)

	
= diag

�
1p
2
; 1; � � � ; 1

	
: (12)

Assume that �Y 2 CN=2�1, �E 2 CN=2�1, and �� 2

RL�1 denote the vectors formed by fW (k)Y (k)gN=2�1k=0 ,

fW (k)E(k)gN=2�1k=0 , f�lg
L
l=1, respectively. Let �S 2

CN=2�N=2 denote a diagonal matrix with fW (k)S(k)gN=2�1k=0

as its diagonal elements, and let �A and �a(!l) denote the
lower halves of A and a, respectively. Then it follows that

�Y = �S �A��+ �E: (13)

Due to the conjugate symmetry of Y (k), S(k), and E(k),
it can be easily proven that minimizing C1(f�l; !lg

L
l=1) is

equivalent to minimizing

C3(f�l; !lg
L
l=1) =k �Y �

LX
l=1

�l�S�a(!l) k
2 : (14)

For the case of white Gaussian noise, it can be proved the
above NLS approach is the same as the ML method. Let

�Yl = �Y �

LX
i=1;i6=l

�̂i[�S�a(!̂i)]; (15)

where f�̂i; !̂igi=1;i6=l are assumed to be given . Then (14)
becomes

C4(�l; !l) =k �Y � �l�S�a(!l) k
2 : (16)

Minimizing C4(�l; !l) with respect to !l and real-valued �l
yields

!̂l = argmax
!l

Re2
�
�aH(!l)(�S

� �Yl)
�
; (17)

and

�̂l =
Re
�
�aH (!l)(�S

� �Yl)
�

k �S k2F

�����
!l=!̂l

: (18)

The iteration steps of WRELAX for real-valued signals
is the same as that for complex-valued signals except that
the cost functions (10) and (11) are replaced by (17) and
(18), respectively.



4. THE MODE-WRELAX ALGORITHM

WRELAX is an e�cient algorithm that is both computa-
tionally and conceptually simple. For signals not spaced
very closely, WRELAX usually converges after a few itera-
tions. However, when the signals get more and more closer
to each other, WRELAX will converge very slowly. In this
section, we modify the popular angle estimation MODE
algorithm and use it with WRELAX to increase the con-
vergence speed of WRELAX.

4.1. MODE-WRELAX for Complex-Valued Sig-
nals

MODE is an asymptotically statistically e�cient estimator
of f!lg

L
l=1 for complex-valued signals [9]. The MODE es-

timates f!̂lgLl=1 of f!lgLl=1 are obtained by minimizing the
following cost function

C5(f!lg
L
l=1) = YHP?~AY; (19)

where P?~A
= I � ~A

�
~AH ~A

��1 ~AH with I denoting

the identity matrix and ~A = SA. To avoid the
search over the parameter space, C5(f!lg

L
l=1) can also be

reparametrized in terms of another parameter vector b =

[ b0 b1 � � � bL ]T , where fblg
L
l=0 are the coe�cients of

the following polynomial:

b(z)
4
=

LX
l=0

blz
L�l 4= b0

LY
l=1

(z � ej!l); b0 6= 0: (20)

Let

B =

2
66664

b0 0
...

. . .
bL b0

. . .
...

0 bL

3
77775 2 CN�(N�L): (21)

Assume that the diagonal elements of S are nonzero (see
Remark 1 for more discussions). Let

~B = S�HB: (22)

It can be readily veri�ed that BHA = 0 and hence
~BH ~A = 0. Then P?~A

= ~B
�
~BH ~B

��1 ~BH and minimizing

C5(f!lg
L
l=1) in (7) is equivalent to minimizing

C6(fblg
L
l=0) = YH ~B

�
~BH ~B

��1 ~BHY: (23)

Note that ~BH ~B in (9) can be replaced by a consistent es-
timate without a�ecting the asymptotically statistical e�-
ciency of the minimizer of (9). Hence b̂ can be obtained
computationally e�ciently as follows:

b̂ = argmin
b

h
YHS�HB

�
B̂H
0 S

�1S�HB̂0

��1
BHS�1Y

i
;

(24)

where B̂0 is the initial estimate of B obtained by replacing
b with b̂(0) in (21). The initial value b̂(0) is obtained by

setting ~BH ~B in (9) to I:

b̂(0) = argmin
b

�
YHS�HBBHS�1Y

�
: (25)

To avoid the trivial solution b = 0, we should impose
k b k= 1 (where k � k denotes the Euclidean norm) in
(24) and (25) or some other similar constraints. The esti-
mates f!̂lgLl=1 of f!lgLl=1 are the phases of the roots of the

polynomial
PL

l=0 b̂lz
L�l. Once f!̂lg

L
l=1 are obtained, the

amplitudes � are estimated by applying the linear least-
squares approach to

Y � SÂ�; (26)

where Â is formed by replacing f!lg
L
l=1 with f!̂lg

L
l=1 in (5).

Remark 1: MODE cannot be implemented e�ciently to
avoid the search over the parameter space when S(k) = 0
for some k. The most commonly used complex analytic sig-
nal s(t) is low-pass. For this case, we can select a contiguous
segment of Y satisfying jS(k)j > 0; K1 � k � K2, and
preferrably with jS(k)j above a certain threshold to avoid
numerical problems. We can then apply MODE to the seg-
ment fY (k)gK2

k=K1
to estimate f!lg

L
l=1.

Remark 2: The amplitude estimates given above can be
very poor when the SNR is not su�ciently high. This is be-
cause some of the MODE estimates f!̂lg

L
l=1 can be so closely

spaced that Â in (26) is seriously ill-conditioned. We use
a simple spacing adjustment scheme to avoid this problem.
After obtaining the MODE estimates f!̂lg

L
l=1 of f!lg

L
l=1,

we �rst sort them in the ascending order and then check
the spacing between two adjacent estimates. If the dis-
tance between any two estimates, say !̂1 and !̂2 (!̂1 � !̂2),
is smaller than a prede�ned threshold, say 4!t, we adjust
the estimates by replacing !̂1 with !̂1�0:54!t and !̂2 with
!̂2 +0:54!t. The amplitudes are then estimated using the
adjusted estimates of f!lgLl=1.
With the above preparations, we now present the steps

of the MODE-WRELAX algorithm for complex-valued sig-
nals.
Step (1): Select a contiguous segment of data vector Y

(for MODE use only) so that jS(k)j > 0; K1 � k � K2.
Apply MODE to the segment to obtain f!̂lg

L
l=1. Adjust

f!̂lg
L
l=1 so that the minimum spacing of f!̂lg

L
l=1 is at least

4!t. Obtain the estimates f�̂lg
L
l=1 of f�lg

L
l=1 by using (26).

Step (2): Re�ne the estimates obtained in Step (1) by
using the last step of WRELAX for complex-valued signals.

4.2. MODE-WRELAX for Real-Valued Signals

Real-valued signals are often bandpass signals that oc-
cur, for example, in underwater sonar and ultra wideband
ground penetrating radar applications. Bandpass signals
have highly oscillatory correlation functions, which makes
the super resolution time delay estimation problem more
di�cult. The larger the center frequency of the pass band,
the sharper the oscillation of the correlation function. How-
ever, by assuming the real-valued amplitudes to be complex-
valued, we can obtain a much smoother cost function that
is much easier to �nd its global minimum. For the case of
one signal without noise, Figure 1 compares the true cost
function (solid line) with the one obtained by assuming the
real-valued amplitudes to be complex-valued (dashed line),
where the signal is a chirp signal whose carrier frequency is
twice of its bandwidth (see Section 5 for details). Based on
this observation, we can apply the MODE-WRELAX algo-
rithm derived above to �Y �rst by assuming the real-valued
amplitudes f�lg

L
l=1 to be complex-valued, and then use the

last step of WRELAX for real-valued signals to re�ne the
estimates.
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Figure 1. Comparison of the cost functions for
complex-valued (dashed line) and real-valued signal
amplitudes (solid line) .

5. NUMERICAL EXAMPLE

Due to the limited space, in this section we use one exam-
ple to show the performance of MODE-WRELAX. In this
example, we use the following real-valued chirp signal,

s(t) = w(t)cos

�
2�f0t+ �

�
t�

T0
2

�2�
; 0 � t � T0; (27)

where f0 denotes the carrier frequency, � represents the
chirp rate, and w(t) is a window function to avoid aliasing.
The signal parameters are chosen as � = �� 105, N = 256,
the signal bandwidth Bs = �T0=�, the carrier frequency
f0 = 2Bs, and the sampling frequency fs = 8Bs. T0 is cho-
sen in such a way that T0 = (N=2� 1)Ts. Assume L = 2,
�1 = �2 = 1:0, j�2 � �1j = 0:2�e, where �e is the resolu-
tion limit of the conventional matched �lter method and
is equal to 1=Bs. The sampled noise fe(nTs)g is assumed
to be a real-valued zero-mean white Gaussian random pro-
cess with variance �2. The SNR for each signal is de�ned
as 10log10(�

2
l =2�

2). We have used � = 0:001 to test the
convergence of WRELAX. The one-dimensional search of
WRELAX is performed in two steps, a coarse search us-
ing FFT followed by a �ne search using the Golden section
search method. The MODE amplitude estimates are ob-
tained without the spacing adjustment.
The mean-squared errors (MSEs) of MODE (\�"), and

MODE-WRELAX (\�") are compared with the CRBs
(solid line) in Figure 2. Since the MODE amplitude es-
timates are obtained without spacing adjustment, they
are so poor at low SNR that some of their MSEs are
above the axis limit due to the inversion of ill-conditioned
matrices corresponding to very closely spaced delay es-
timates. By assuming the real-valued amplitudes to be
complex valued (the same assumption used by MODE),
the MODE-WRELAX algorithm for complex-valued ampli-
tudes ( notated as MODE-WRELAX(C) (\�")) performs
better than MODE and can approach the CRBs correspond-
ing to complex-valued signals (notated as CRB(C) (dashed
lines)). Nevertheless, these wrong CRBs can be larger than
the true CRBs, which corresponds to the real-valued am-
plitudes, by approximately 30 dB. MODE-WRELAX sig-
ni�cantly outperforms MODE and WRELAX and can ap-
proach the true CRBs.

6. CONCLUSION

In this paper, we �rst present a computationally and con-
ceptually simple algorithm (WRELAX) for time delay esti-
mation. One major advantage of WRELAX is that it esti-
mates the time delays and the amplitudes jointly and does
not have the ill-conditioning problem su�ered by many sep-
arate delay and amplitude estimation techniques. The com-
bination of MODE with WRELAX signi�cantly improves
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Figure 2. Comparison of the MSEs of MODE
(\�"), MODE-WRELAX(C) (\�"), and MODE-
WRELAX (\�") with the true CRBs (solid lines)
and the wrong CRBs (dashed lines) corresponding
to real- and complex-valued signals, respectively,
for (a) �1, (b) �2, (c) �1, and (d) �2.

the convergence speed of WRELAX and the estimation ac-
curacy of MODE.
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