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ABSTRACT

We propose a receiver diversity based code-timing esti-
mator for DS-CDMA systems. The systems are assumed
to work in a 
at fading and near-far environment, where
an arbitrary antenna array is used at the receiver of the
system to achieve the spatial diversity. The algorithm is
derived by modeling the known training sequence as the
desired signal and all other signals including the multiuser
interfering signals and the additive noise as unknown col-
ored Gaussian noise so that the knowledge of the number
of active users is not required. We show that by utiliz-
ing the information collected via multiple antenna sensors,
the length of the training sequences can be greatly reduced.
We also show that the algorithm is an asymptotic maximum
likelihood estimator. As a result, the mean-squared error
of the code-timing estimates obtained by the algorithm ap-
proaches the Cram�er-Rao lower bound (CRB) as the length
of the training sequence increases. Moreover, the algorithm
does not require the search over a parameter space and the
code-timing is obtained by rooting a second-order polyno-
mial, which is computationally very e�cient. Simulation
results show that the algorithm is quite robust against the
near-far problem and requires a much shorter training se-
quence than the existing estimators.

1. INTRODUCTION

The ability to achieve code synchronization in a near-far
DS-CDMA (direct-sequence code division multiple access)
environment has been determined to limit the capacity of
communication systems [1]. As a result, code-timing esti-
mation has received much attention in recent years. Several
estimators have been proposed in the literature [2]. How-
ever, all of these estimators are developed based on a single
antenna sensor. The problem of estimating the code-timing
of a desired user for a receiver diversity DS-CDMA system
that uses multiple antenna sensors at the receiver has not
been well studied. In [3], we have proposed a code-timing
estimation algorithm for receiver diversity DS-CDMA sys-
tems. The algorithm was developed by using the informa-
tion collected by an arbitrary antenna array consisting of
multiple antenna sensors and is referred to as MASE (Mul-
tiple Antenna Sensors based Estimator).
The MASE algorithm is designed for the system where

the number of antenna sensors is relatively small. Typically,
a few sensors are used for a system with 20 to 30 active
users. The performance of MASE cannot be signi�cantly
improved by further increasing the number of antenna sen-
sors when, for fair comparisons with a single antenna based
methods, we assume that the noise variance is proportional

to the number of antenna sensors used in the receiver. In
this paper, we propose another code-timing estimator when
a relatively large number of antenna sensors is used in the
receiver. This new algorithm takes further advantage of
the spatial diversity and is referred to as REDIVE (RE-
ceiver DIVersity based Estimator). Both MASE and RE-
DIVE are asymptotic maximum likelihood estimators and
are derived by modeling the known training sequence as
the desired signal and all other signals as unknown colored
Gaussian noise. Also, both algorithms do not require the
search over the parameter space. The code-timing estimates
are obtained by rooting a second-order polynomial. How-
ever, the speci�cs of the data model used in REDIVE are
di�erent form those in MASE. Simulation results show that
the amount of computations required by REDIVE is about
the same as that required by MASE. The length of train-
ing sequences required by REDIVE is signi�cantly shorter
than that required by MASE, but at a cost of more antenna
sensors.

2. PROBLEM FORMULATION

Consider an asynchronous BPSK (binary phase shift key-
ing) DS-CDMA system. The kth user transmits a signal of
the form

~xk(t) =
p
2Pk~sk(t) cos(!ct+ ��k); (1)

where Pk is the user's transmitted power, !c is the car-
rier frequency, ��k is a random carrier phase uniformly dis-

tributed between 0 and 2�, and ~sk(t) =
PM�1

m=0 dk(m)~ck(t�
mTb) with M being the number of the data bits consid-
ered, Tb denoting the data bit duration, dk(m) 2 f�1;+1g
denoting the value of the mth data bit, and ~ck(t) =PN�1

n=0
ck(n)�Tc (t� nTc) being the spreading waveform in

which ck(n) 2 f�1;+1g, N = Tb=Tc, and �Tc (t) denoting
a unit rectangular pulse over the chip period [0; Tc).
We use an arbitrary antenna array consisting of L an-

tenna sensors at the receiver of the system. We consider
the case of 
at fading, where for each user, the time-delay
di�erences due to multipath are negligible. For this case,
we model the signal received by the lth sensor as

~yl(t) =

KX
k=1

~al;k ~xk(t� �k) + ~nl(t); l = 1; 2; � � � ; L; (2)

where K is the number of users, ~al;k is the fading coe�-
cient, �k is the propagation delay, and ~nl(t) denotes the
channel noise. Given su�cient physical separation among
the constituent antennas, the fading coe�cients f~al;kg can
be modeled as mutually independent random variables [4].



We assume that f~ak;lg are also independent of the random
carrier phase

�
��k
	
and the channel noise f~nl(t)g. In ad-

dition, we assume that the transmitter and receiver have
aligned their clocks to roughly within a bit interval. This
could be done, for example, on a side \signalling channel",
where a call is initially set up. Hence, we consider only the
relative propagation delay, that is, �k 2 [0 Tb).
Assume that the receiver front-end consists of an IQ-

mixer followed by an integrate-and-dump �lter with inte-
gration time Tc. The equivalent received complex sequence
of the lth sensor, yl(i), is described as

yl(i) =

KX
k=1

al;k
p
Pke

j�k
1

Tc

Z iTc

(i�1)Tc

~sk(t��k)dt+nl(i); (3)

where �k = ��k�!c�k, nl(i) denotes the noise term assumed
to be zero-mean complex white Gaussian with variance �2n,
and al;k is the fading coe�cient assumed to be zero-mean
complex Gaussian with variance �2a.
Let �k = pkTc+�k, where pk 2 f 0; 1; � � � ; N � 1 g

and �k 2 [0; Tc). The integration in the right-hand side of
(3) is then given by

rk(i)
4

=
1

Tc

Z iTc

(i�1)Tc

~sk(t� �k)dt

= (1 � �k=Tc) ck(i�m1N � pk � 1)dk(m1)

+(�k=Tc)ck(i�m2N � pk � 2)dk(m2); (4)

where m1 and m2 are integers such that 0 � i � m1N �
pk � 1 � N � 1 and 0 � i�m2N � pk � 2 � N � 1. Let

ck = [ ck(N � 1) ck(N � 2) � � � ck(0) ]T (5)

and

rk(m) = [ rk(mN +N) � � � rk(mN + 1) ]; T (6)

where (�)T denotes the transpose. We then have

rk(m) = [ a1(�k) a2(�k) ]zk(m)
4

= A(�k)zk(m); (7)

where

zk(m)
4

=
�
z
(1)
k (m) z

(2)
k (m)

�T
4

=
�

dk(m)+dk(m�1)
2

dk(m)�dk(m�1)
2

�T
; (8)

a1(�k) =
h�

1� �k
Tc

�
J
(pk)
+1 +

�k
Tc
J
(pk+1)
+1

i
ck; (9)

and

a2(�k) =
h�

1� �k
Tc

�
J
(pk)
�1 +

�k
Tc
J
(pk+1)
�1

i
ck; (10)

with

J(p)s =
h

0 IN�p
sIp 0

i
; s = �1; (11)

in which Ip denotes the p� p identity matrix. Let

yl(m) = [ yl(mN +N) � � � yl(mN + 1) ]
T

(12)

and

nl(m) = [ nl(mN +N) � � � nl(mN + 1) ]T : (13)

Without loss of generality, assuming that the �rst user is
the desired user, we can rewrite (3) as

yl(m) = al;1
p
P1e

j�1r1(m) + el(m); (14)

where

el(m) =

KX
k=2

al;k
p
Pke

j�krk(m) + nl(m) (15)

denotes the sum of the MAI and the additive noise. Let

�l = al;1
p
P1e

j�1 : (16)

We then have

yl(m) = �lA(�1)z1(m) + el(m); l = 1; 2; � � � ; L: (17)

The problem of interest herein is to estimate �1

from
�fyl(m)gM

m=1

	L
l=1

assuming that fc1(n)gN�1n=0 and

fd1(m)gM�1m=0 are known. Since the integer p1 has only N
possible values f0; 1; � � � ;N � 1g, which can be obtained by
trying these values one by one, the problem becomes to

estimate �
4

= �1=Tc with p1 being given.

3. THE REDIVE ALGORITHM

To utilize the receiver diversity, we arrange the output sam-
ples as follows:

Y =

2
4 yT1 (1) yT1 (2) � � � yT1 (M)

...
...

. . .
...

yTL(1) yTL(2) � � � yTL(M)

3
5 ; L� (MN):

(18)
Let

Z1 = [ z1(0) z1(1) � � � z1(M � 1) ] ; 2�M; (19)

and E be de�ned similarly to Y. We have

Y = �vecT fA(�1)Z1g+ E; (20)

where � = [ �1 �2 � � � �L ]T and vec(X) =

[ xT1 xT2 � � � xTN ]T with fxngNn=1 being the columns of

matrix X. Let u = [1� � �]T . Then (20) can be written
as

Y = �uTX+ E; (21)

where

X =

�
J
(p1)
+1 c1 J

(p1+1)
+1 c1

J
(p1)
�1 c1 J

(p1+1)
�1 c1

�T
(Z1 
 IN ) : (22)

Note that for a given p1, X is completely known. Let yi, xi,
and ei denote the ith columns of Y, X, and E, respectively.
Then

yi =
�
�uT

�
xi + ei; i = 1; 2; � � � ; (NM); (23)

where fxigNM

i=1 are known for a given p1. Due to the central
limit theorem, we assume that ei is independent of the de-
sired signal and is a circularly symmetric complex Gaussian
random vector with zero-mean and arbitrary covariance ma-
trix Qs that satis�es

E
�
eie

H
j

	
= Qs�i;j; (24)



where the unknown covariance matrix Qs models both ther-
mal noise and all other interference signals including MAI.
It follows that the log-likelihood function is proportional to:

C = � ln jQsj�tr
(
Q�1s

1

NM

NMX
i=1

[yi �Cxi] [yi �Cxi]
H

)
;

(25)
Minimizing (25) with respect to Qs yields the ML estimate

Q̂s of Qs

Q̂s =
1

NM

NMX
i=1

[yi �Cxi] [yi �Cxi]
H : (26)

Inserting Q̂s in (26) into (25), we note that the estimate Ĉ
ofC is determined by minimizing the following cost function

C1 =

����� 1

NM

NMX
i=1

[yi �Cxi] [yi �Cxi]
H

����� : (27)

Let

R̂xx =
1

NM

NMX
i=1

xix
H
i ; (28)

R̂xy =
1

NM

NMX
i=1

xiy
H
i ; (29)

R̂yy =
1

NM

NMX
i=1

yiy
H
i : (30)

The matrix in the right-hand side of (27) can be described
as

F
4

=
1

NM

NMX
i=1

[yi �Cxi] [yi �Cxi]
H (31)

=
�
C� R̂H

xyR̂
�1
xx

�
R̂xx

�
C� R̂H

xyR̂
�1
xx

�H
+R̂yy � R̂H

xyR̂
�1
xx R̂xy: (32)

Hence, the unstructured ML estimate of C, which does not
use the structure of C, is given by

Ĉ = R̂H
xyR̂

�1
xx : (33)

Using the Ĉ in (33), we obtain the unstructured estimate

Q̂s of Qs:

Q̂s = R̂yy � R̂H
xyR̂

�1
xx R̂xy: (34)

Consider now the structure of C. The C1 in (27) can be
rewritten as

C1 =
��(C� Ĉ)R̂xx(C� Ĉ)H + Q̂s

��
=

��Q̂s

�� ��IN + Q̂�1s (C � Ĉ)R̂xx(C� Ĉ)H
�� : (35)

Minimizing C1 in (35) with respect to the unknown parame-
ters inC requires a multidimensional search over the param-
eter space, which is computationally prohibitive. Hence,
instead of determining the exact ML estimates of the un-
known parameters, we determine the large sample approx-
imate ML estimates as follows. By neglecting the second-

and higher-order terms in the Taylor expansion of the gra-
dient of ln(C1) with respect to the unknowns, we can show
that minimizing ln(C1) is asymptotically (for large NM)
equivalent to minimizing [5]

C2 = tr
�
R̂xx(�u

T � Ĉ)HQ̂�1s (�uT � Ĉ)
�
: (36)

Note that the number of known samples here is NM , which
is easily much larger than L for a moderate M when L is
about the same as N .
Let

�u = R̂
1

2

xxu
4

= [ ��1 ��2 ]T ; (37)

and
�̂C = ĈR̂

1

2

xx
4

=
�
�̂c1 �̂c2

�
: (38)

Then (36) can be written as

C2 =
�
� � �̂C�u= k�uk2

�H
k�uk2 Q̂�1s

�
� � �̂C�u= k�uk2

�
�
�
�̂C�u
�H

Q̂�1s

�
�̂C�u
�
= k�uk2 + constant; (39)

where (�)� denotes the complex conjugate. The minimiza-
tion of C2 is achieved when

�̂ =
�̂C�u

k�uk2 =
ĈR̂xxu

uT R̂xxu
; (40)

and

�̂ = arg max
�

�
uT R̂xxĈ

HQ̂�1s ĈR̂xxu

uT R̂xxu

�
; (41)

which is obtained by rooting a second order polynomial.

4. CRB OF THE PARAMETER ESTIMATES

Let
� =

�
� ReT (�) ImT (�)

�T
; (42)

where Re(X) and Im(X), respectively, denote the real and
imaginary part of X. The CRBs for the parameter esti-
mates of � can be written as

CRB(�) =

 
2Re

("
F�� F�� jF��
FH�� F�� jF��

�jFH�� �jF�� F��

#)!�1
;

(43)
where

F�� =

(
NMX
i=1

xHi

h
1 �1
�1 1

i
xi

)
�HQ�1s �; (44)

F�� =

(
NMX
i=1

xHi

�
��T
�T

�
xi

)
�
�HQ�1s i1 � � � �HQ�1s iL

�
; (45)

and

F�� =

(
NMX
i=1

xHi ��
Txi

)
Q�1s : (46)
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Figure 1. Probability of correct acquisition as a
function of M for K = 20 users, N = 31 chips/bit,
Eb=N0 = 10dB, and log-normally distributed inter-
fering powers with a mean 10 dB above the desired
signal and a standard deviation of 10 dB.

5. NUMERICAL EXAMPLES

It has been shown in [2] that among the correlator [6],
MMSE [7], MUSIC [8], and LSML [2], the performance of
the correlator is the worst. Of the other three approaches,
the MMSE estimator is the best when M is smaller than N ,
while when M is larger than N , LSML is the best. Since
we study the situation where M is small in this paper, we
only compare our estimator with MMSE.
Figure 1 shows the code acquisition probability for MASE

and REDIVE with di�erent L along with the MMSE esti-
mator. It is seen that MMSE performs poorly. It is also
seen that REDIVE is signi�cantly better than MASE. Yet
the average numbers of MATLAB 
ops required by RE-
DIVE with L = 20 and 30, respectively, are about 0:8 and
1:5 times as much as those required by MASE.
In Figure 2, the performance of the REDIVE algorithm

is compared with the MASE algorithm and the CRB as a
function of M . It is seen that as M increases, the per-
formance of the REDIVE algorithm approaches the CRB.
The RMSE (root mean-squared error) of REDIVE is much
smaller than that of MASE.

6. CONCLUSIONS

We have proposed a code-timing estimator for receiver di-
versity DS-CDMA systems. The systems are considered
working in a 
at fading and near-far environment. The al-
gorithm has been derived by modeling the known training
sequence as the desired signal and all other signals includ-
ing the multiuser interfering signals and the additive noise
as unknown colored Gaussian noise so that the knowledge
of the number of active users is not required. We have
shown that by utilizing the information collected via multi-
ple antenna sensors, the length of training sequences can be
greatly reduced. The algorithm is an asymptotic maximum
likelihood estimator. As a result, the mean-squared error
of the code-timing estimates obtained by the algorithm ap-
proaches the Cram�er-Rao lower bound as the length of the
training sequence increases. Moreover, the algorithm does
not require the search over a parameter space and the code-
timing is obtained by rooting a second-order polynomial,
which is computationally very e�cient. Simulation results
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Figure 2. Comparison of RMSEs obtained by
MASE and REDIVE with those of the CRBs as
a function of M , when N = 31 chips/bit, K = 20
users, L = 30 antenna sensors, Eb=N0 = 10dB, and
log-normally distributed interfering powers with a
mean 10 dB above the desired signal and a standard
deviation of 10 dB.

have shown that the algorithm is quite robust against the
near-far problem and requires a much shorter training se-
quence than the existing estimators.
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