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ABSTRACT

In [1] a matched-filter based detector was developed
for the problem of detecting a 2-D target signal where
prior information about the target pattern or template
as well as the statistical properties of the clutter is
limited. This was accomplished by an ad hoc substi-
tution of the maximum likelihood estimate (MLE) of
unknown clutter covariance matrix and the MLE’s of
the complex amplitudes of the significant features com-
ponents of target into the matched filter test. This pa-
per provides a new approach for the problem based on
the generalized likelihood ratio (GLR) principle which
maximizes the GLR function over unknown clutter co-
variance matrix and the unknown significant feature
components of target signal to be detected. This new
GLR test is compared with the matched-filter based
test in [1] for performance. The feature mapping and
representation which can be incorporated into the test
to characterize the unknown target pattern are various,
including the short time Fourier transform, the discrete
cosine transform, and the discrete wavelet transform.

1. INTRODUCTION

In most detection applications, clutter covariance ma-
trix and target pattern to be detected are not known
apriori with any certainty. If the covariance matrix is
unknown for a nonstationary clutter background, then
one must account for by using adaptive techniques.
One of the adaptive approaches, proposed earlier by
Reed, Mallett and Brennan in {2] for not knowing the
true clutter covariance matrix, is the ad hoc procedure
of substituting the maximum likelihood estimate based
on the observation data into the test function derived
by assuming clutter covariance is known. This method
was employed in [1] for the problem to detect a 2-D sig-
nal without priori knowing the target pattern as well as
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the statistical properties of the clutter. The detection
test was derived by an ad hoc substitution of the max-
imum likelihood estimate (MLE) of unknown clutter
covariance matrix and the MLE’s of the complex am-
plitudes of the significant features components of target
into the matched filter test, which assumes a known tar-
get pattern with an unknown scale complex amplitude
embedded in a complex Gaussian clutter with a known
covariance. One may question about the ad hoc substi-
tution procedure and be interested in seeing if the GLR
test can work better under the same conditions. There-
fore the GLR test using feature mapping framework is
investigated in this paper to provide another approach
for detection of unknown target pattern and adaptation
to unknown clutter statistics. This is accomplished by
maximizing the GLR function over unknown clutter
covariance matrix and the unknown significant feature
components of target signal to be detected. The signif-
icant features of target for a selected mapping are prior
information incorporated into the GLR test to faciliate
pattern uncertainty characterization.

2. PROBLEM FORMULATION

A. Data Model: First let
'v‘tN]T (1)

denote the N-vector formed by row ordering the pixels
of the complex subimage of the observation data. Next
let s be the complex pattern vector of signal to be de-
tected which is also in a row ordering. Finally, assume
that the data vector z equals approximately the signal
s, plus a clutter-plus-noise vector n, 1.e.,

37_=[1=1,132,-~

r=s+n, (2)

where the vector n is assumed to have a complex mul-
tivariate normal distribution with zero mean, denoted
by Nn(0, M), under hypotheses H;, for i = 0,1. Here
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M = E{nn"|H;} denotes the covariance matrix of the
clutter background n under both Hp and H;.

Next, assume that the pixel data surrounding the
neighborhood in which the presence of the signal is to
be tested is approximately homogeneous (stationary in
space). Then let y,, fori=1,2,...,L,be approximat.ely
independent L vectors of data surroundmg or in the
neighborhood of the signal template s, which are called
“secondary data” and represented by an N x L matrix
Y = [y,,¥, y.]. The secondary data matrix Y is
subjected to N;I(O I, ® M), where I isan L x L
identity matrix and ® denotes the Kronecker product

B. Feature Mapping and Representation: Let s
be an N-dimensional signal vector. Then s can be rep-
resented always by the summation of n linearly inde-
pendent vectors as follows:

N
5= 6 ba=Pxby+e (3)
n=1

where
by = [2122, ”"’éx] ,

and “T” denotes transpose operation. One may call
[ the n-th feature or feature vector, and b, the n-
th component of the feature space. The matrix @k is
assumed to be composed of K most significant features
and e is the error vector due to the approximation with
the K features.

One can use the mean-square magnitude of e(K)
the part of a criterion to measure the effectiveness of
a subset of K features or basis vectors. If the b,’s are
random, it is well-known that the optimal choice for
the ¢_’s is the eigenvectors of the covariance matrix of
s, Le. e. the Karhunen-Loeve expansion. Since the signal
covariance matrix is usually unknown and hardly even
measured by using observations, the KL expansion is
rarely used in practice. Other suboptimal feature map-
pings may include those from the conventional image
transforms to the modern multiresolution decomposi-
tions. The traditional image transforms, such as the
Fourier Transform and the Discrete Cosine Transform
(DCT) provide the frequency domain information of
the data. The DCT is excellent on energy compaction
for highly correlated data. It is well known that the
DCT is a close approximation to a KL transform of the
first-order Markov process when the correlation coeffi-
cient p is close to one. Modern multiresolution decom-
positions, such as the wavelet and Gabor transforms,
are well known for their capability to provide both spa-
tial and frequency localizations.

In the transform feature domain the significant fea-
tures, i.e., the features which carry most of the signal

by = [b1ba, .oy by )T

energy, are extracted with a selected mask. In order to
measure the separability of the selected target features
from the clutter, the locations of the extracted signif-
icant target features are compared with the locations
of significant clutter features in the transform domain.
A large separability gives rise to a high signal-to-noise
ratio (SNR) and as a consequence has a better detec-
tion performance. Here “noise” consists of clutter-plus-
receiver noise.

3. MATCHED-FILTER BASED DETECTOR
WITH FEATURE MAPPINGS

Consider the classical hypothesis testing given by
Ho:z=n Hi:z=s+n. (4)

Let the mean value of the data vector z and the co-
variance matrix of the clutter background n, under hy-
potheses H;, for i = 0, 1, be denoted by

E{n|Ho} =0, E{n|H:} =5, M =E{nn*|H}. (5)

Then the magnitude of the optimal matched filter for
a noncoherent detection is given by

<p then Hg

—_lhar—1
lwl=1s"M""zl O (hen H, . (6)

The output of the test criterion in (6) can be made to
have a constant false alarm rate (CFAR) by creating
the following normalization:

h
_ [sh M ~1s = [S M~'z] < then Hy
u=lyl/Vs Ell oy /shM~-1s >p then Hy,

(7)
p=p/V/s"M1s . (8)

Such a test has a variance of one. The detector in
(7) is a maximum invariant test under the group of
the change-of-phase and the change-of-scale transfor-
mations on §.

In most applications, the clutter-plus-noise covari-
ance matrix M and the signal vector s are not known
apriori with any certainty. Thus in such cases, in order
to perform the detection test in (7), it is necessary to
find statistical estimates of M and § to substitute into
the test (7) for M and s, respectively. A substitution of
these estimates into the square of the test in (7) yields
the test criterion,

where

3" M~ 1g|?

M-

2 then Hy
p? then H; . ©)

<
r=
>
The statistical test in (9) might be called a rational
substitute for the optimum invariant test in (7).
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It is well known that the maximum likelihood es-
timates (MLEs) of the covariance matrix M and the
unknown components b; of significant feature vector
é is given by a matrix form as below, respectively,

b = (B M1 0k) H®RM ') . (10)

A use of Eq. (10) to obtain § and M, then sustituting
them into (9) yields finally the test,

r(z, M) = z" M~ @ (4 M~ 10g) 0% M~z
< p? then Hy
> p? then H; (11)

4. GENERALIZED LIKELIHOOD RATIO

BASED DETECTOR WITH FEATURE
MAPPINGS

Under the data model assumption and target feature
representation described in Sec. 2, the two hypotheses
which the detector must distinguish can be alterna-
tively formulated by

z=n z=s5+n=%gbyx +n
=0 y=n

H()Z . Hli
QL:QL ng—L

where the joint probability density functions of z,Y
under hypotheses H;, for i = 0,1, are given as follows:

1
p(z, Y|Hy) = P(£|H0)P(Y|H0)=( YNEHD|MT+D)
L
exp{—( Z Mt y,
) 1
p(,Y|H) = P(£|H1)P(Y|H1)=(W)N(L+1)|M|(L+1)

exp{—[(z ~ Pxbx)" M (z - Pxby)

L
+Z§/.?M_1.-'il)} : (12)
=1

Then the generalized maximum likelihood ratio test is
formulated by:

maxy m p(z, Y|Hy, by, M)

A =
(LY) maxps P(LYIHO’M)
> Ao then H,
< Ao then Hy )

Maximizing the numerator and denominator in (13)
with respect to the unknown parameters yields the test-
ing function A(z,Y’) as follows:

MO (PR M10g) 1O M 2

Mz, Y) =

1+ %g"M"lg
S /\0 then Ho ’
S o then Hy . (14)

where o = L(1 — &) and M is defined in Eq. (10)
The relationship of this GLR test to the matched filter
based test is revealed by the following equation,

r(z, M)

1+ fzhM-1z (1)

Mz, M) =
This explicit expression indicates that when L becomes
larger, two tests tend to be the same.

5. EXPERIMENTAL RESULTS USING
ACTUAL SAR DATA

The new developed GLR, detector is compared with the
match filter based test by using the actual synthetic
aperture radar (SAR) data collected by by MIT Lincoln
Laboratory on the SRI Ultra Wideband (UWB) SAR
sensor. The observed image data, called Illustrative-
Example image, is shown in Fig. 1, which consists of
twelve military vehicles (three are camouflaged) and
indicated by T through Ti,.

The detection results obtained by applying the new
GLR test and the match filter based test are shown
in Fig. 2 and 3 respectively, where the discrete co-
sine transform is used for target feature mapping and
representation. The false detections are indicated by
F; through F3. A comparison of two resulting detec-
tion images reveals that for the same number of cor-
rect detections, the number of false alarms caused by
the match filter based test is a little bit larger than
by that of the GLR test. However, the computation
complexity of the match filter based test is lower than
the GLR test. An analytic performance comparison is
under investigation.
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Figure 1: Illustrative-Example SAR image of the SRI FOPEN II ultra-wideband SAR system with HH-polarization,
and a 1 meter resolution.

Figure 2: Automatic target detection results by applying the GLR test to the Illustrative-Example Site of Fig. 1.
The results are obtained by using DCT linear feature map with the number of significant features being K =16

out of 128.
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Figure 3: Automatic target detection results by applying the match filter based test to the Illustrative-Example
Site of Fig. 1. The results are obtained by using DCT linear feature map with the number of significant features
being K = 16 out of 128.
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