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ABSTRACT

In this paper, we consider the classification of radar signals
by using stochastic models at different scales. The signal
at a different scale is modeled by a hierarchical Autoregres-
sive Moving Average (ARMA) model, and the features at
coarse scales are extracted from the model without perform-
ing expensive filtering operation. The hierarchical model-
ing can increase the accuracy of radar signal classification
by exploiting features at different scales. For radar signal
classification, model parameters at five different scales ob-
tained by hierarchical modeling are used as features. A
minimum distance classifier is implemented, and is tested
on real aperture radar signals.

1. INTRODUCTION

Recently, there have been studies on AR models in scale
space with emphasis on model representation, parameter
estimation and prediction when a signal is changed from
fine to coarse (aggregation) and from coarse to fine scale
(disaggregation) [1]. The hierarchical models based on mul-
tiscale AR models are potentially useful for improving the
performance of radar signal processing algorithms in terms
of accuracy and robustness.

In this paper, we consider the classification of radar sig-
nals by using features extracted from stochastic models at
different scales. A simple approach to finding features at a
coarse scale is to fit a model at a coarse scale after aggrega-
tion. The aggregation, also called as decimation filtering, is
the process of changing scales from fine to coarse by filtering
followed by an m:1 down sampling. After aggregation, the
number of samples is reduced by m, the aggregation factor.
In general, the analysis of signals at multiple scales requires
aggregation over different scales, and it requires more com-
putations than when features are extracted at one scale.
The approach presented in this paper is based on the fact
that the model at a coarse scale can be obtained from the
model at a finer scale, if the signal follows an ARMA model.
Therefore, the hierarchical modeling approach is computa-
tionally efficient because it does not perform expensive dec-
imation filtering.
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When a signal following an ARMA model is aggregated,
the aggregated data also follows an ARMA model. The AR
polynomial of the aggregated model can be uniquely ob-
tained from the AR polynomial of the model before aggre-
gation. The moving average polynomial of the aggregated
model is obtained from the correlation structure. Model
disaggregation is a process which identifies models at finer
scales from a model at a coarse scale. We generalize the
model disaggregation approach in [6] to nonuniform filter-
ing. The moving average parameters of the disaggregated
model are estimated from the disaggregated correlations.

The radar signal classification algorithm presented in
this paper is based on model aggregation. For each radar
signal, an AR model of 30th order is fitted and parame-
ters are estimated at the finest scale. Then the roots of
the AR polynomial are sorted in order of magnitude, and
two pairs of complex roots closest to the unit circle are se-
lected as features at that scale. In coarser scales, the roots
of the AR polynomial are computed by the the model ag-
gregation algorithm. Two pairs of complex roots closest
to the unit circle are selected at each scale. The features
are computed over five different scales (m=:1,2,4,8, and 16).
A minimum distance classifier with Eucledian distance is
implemented to classify radar signals. The multiscale clas-
sifier is applied to classify radar returns from 35 different
targets. The results show that the multiscale classifier per-
forms better than the classifier using features from a single
scale.

2. HIERARCHICAL STOCHASTIC MODELS

In this section, we consider the stochastic modeling of sig-
nals at the output of decimation filter in Figure 1, assuming
that the input process is ARMA(p,q). In an analysis filter
bank, the input signal is decomposed by a bank of deci-
mation filter in Figure 1. Suppose that the signal {x({i),
i=1,...,N} at the finest scale follows an ARMA(p,q) model.
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where {w(i)} is a zero mean white noise sequence with vari-
ance o2, and a;’s and b;’s are real constants.
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Figure 1. Decimation filter
Equation (1) can be rewritten as
Ap(2)z(i) = By(2)w(i),i=1,....N (2)

where

Ap(z)=1=a127  —a27%2 — ... —gp27P, 3)

By(z)=1+b1z7 bz 4 ... 4 bgz?

and z7! is the delay operator, and we assume that the roots
of Ap(z) and By(z) lie inside of the unit circle for stability
and invertibility of the model.

Suppose that the signal at a coarse scale {ym(i),: =
1,...,N/m} is obtained by applying an finite impulse re-
sponse (FIR) filter of length L followed by an m:1 down
sampling operation. This process is called the aggregation
process.

L-1

ym(i) = Y _ hyz(im — j) = H(z)z(im), (4)

j=0

where H(z) =ho + hiz™ 4+ -+ hp_q2z7 5! (5)

In previous work [1], the aggregation by uniform fil-
tering is considered. In this paper, we generalize previous
results to arbitrary FIR filtering and show that {ym()} is
an ARMA(p,q*), where ¢* =[(p(m -1} + ¢+ L ~1)/m], as
summarized in Theorem 1.

Theorem 1: The aggregated data {ym(i)} defined (4) fol-
lows an ARMA(p, ¢*) model in (6), where ¢* = [(p(m —1)+
g+ L-1)/m].

Cp(2)ym(i) = Dg=(2)(d), (6)

where the AR polynomial Cp(z) is

Co(z)=1—-c1z7l =z — .. —¢p2™P
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T1,...,Tp are roots of A,(z), and the MA polynomial Dy (2)
is
DQ'(Z)=1+d12—1+d2z—2—...+dq.z—q' (8)

Corollary 1: If the MA order of disaggregated model is
less than or equal to AR order (¢ < p), then the MA order
of aggregated model is also less than equal to AR order
(¢* < p).

The parameters of MA polynomial Dgs(2) of {ym(i)}
can be estimated by solving simultaneous nonlinear equa-
tions of correlations, and the correlation of {ym(z)} is com-
puted in terms of the correlations of {z(7)}

Ryy(k) = H(2)H(27")Raz(mk)
=z gm0z g2 g (9)
+g12 4+ Hgm—22""gmo1 3m—1)RII(mk)r

where g; is the coefficient of z* in the polynomial H(z)H(z™1).
Since Rz (—k) = R:z(k), (9) can be rewritten as follows
for L > 0.

Ryy(0) Rzz(0) 1
Ryy(1) Raz(1)
: =Gnm(L) : (10)
Ry, (L) Rez(mL+m-1) J
where G (L) is the following Lx({L+1)m) matrix.
gO Om Om Om - . . Om |
g gt Om Om - . - Om
Om g~ g% Om - . . Om
: : (11)
Om Om - - - O0m g~ gt |

In (11), gO, g, g*, and Om are row vectors of m elements
defined by the following equations.

0

g =[g9 201 29 29m-1 ]  (12)

g =[0 gm-1 gm-—2 - - - g ] (13)
gf={90 o @ gm—1 ] (14)
Om=[0 0 0 - - - 0] (15)

For k > ¢*, the correlations Ry,(k) can be recursively com-

puted as
?

Ryy(k) =) ciRyy(k — ). (16)

=1

3. MODEL DISAGGREGATION

Model disaggregation is the identification of finer scale mod-
els from a coarser scale model. Suppose that {ym (i)} is the
time series obtained by aggregating {z(i)} as shown in (4).
The disaggregated sequence {z()} is not observable, and
is assumed to follows an ARMA model with unknown pa-
rameters. By Theorem 1, the order of AR polynomial does
not change after aggregation. However, there are many-
to-one relations between AR polynomials of disaggregated
and aggregated models. We resolve this ambiguity in dis-
aggregation of AR polynomial by selecting minimum phase
poles.

Suppose that s1,..., 8, are roots of AR polynomial Cp(z)
of the aggregated model. Then Cp(z) can be factorized as
shown in the following equation.

Go(z) = [J(1 5,27 (17)

3648



The following disaggregated AR polynomial is obtained by
choosing the minimum phase roots.

P

Ap(2) = [ -2, (18)

1=1

where 7; is the minimum phase root which maps to s; by
m-th power operation.

Now, we need to find MA polynomial B,(z) of the disag-
gregated model. The MA polynomial B,(z) of the disaggre-
gated model can be estimated from the correlation function
of the disaggregated data {R..(k)}. However, the disaggre-
gated data and its correlation function is not available, and
we need to estimate Rsz(k) from the correlation function
of the aggregated data {R,y(k)}. By Corollary 1, ¢* < p
if ¢ < p, and we assume that ¢* < p and ¢ < p. Then we
need to consider Ryy(k) for k < p because Ryy(k) does not
depend on MA parameters for k > p. Therefore, from (10),

Ryy(0) R23(0)
Bal) |1 Re) o
Ryy(P) sz(mp + m — 1)

where G (p) is defined in (11). However, Rz.(k) for k > p
can be obtained in terms of {R..(k), ¥ < p} and the AR
parameters using the following relation.

p
sz(k) = ZaiRzz(k - l) (20)
i=1
Therefore, we have
R.z(0) I R.z(0)
sz(l) _____ RI-"-'(]')
Rzz(z) = f}z:f-l RII(z) s
Rez(mp+ L —1) f$p+m_1 Rzz(p)
(21)

where [ is the (p+1)x(p+1) identity matrix, and fp41, - --
Jfmp4m—1 are p-vectors determined recursively in terms of
AR parameters.

0 0
Gp k-1 :
fp+1 = Gp-1 y and fp+k = Z aifp-i-k—i + ap )
: i=1 :
ai Ak
(22)
for k=2,...,(p+1)(m-1).
Define
I
- _f_T__ -
F =Gnip) P : (23)
fv'lr:p-f-m—l

The matrix F is invertible under the assumption of no hid-
den periodicity [6]. Therefore from (19), the correlations of

disaggregated data, R.:(k) are obtained from the correla-

- tions of aggregated data as

Raa(0) Ry, (0)
Ree) || Rnl) o
Rea(p) Ryy(p)

The correlations R::(k) for k > p are obtained using (20).
The MA parameters of disaggregated model are estimated
from the correlation function.

4. APPLICATION TO RADAR SIGNAL
CLASSIFICATION

A signal at different scales gives features that are not ob-
servable from a single scale. The hierarchical approach dis-
cussed in previous sections enable us to find models at dif-
ferent scales without actual aggregation and resampling.
Therefore, we can incorporate features from different scales
in radar classification without adding much computational
complexity by using a hierarchical model. )

The hierarchical modeling approaches in multichannel
filter banks are applied to radar signature classification.
Figure 2 shows MMW RAR signatures of a T-72 tank and
ZIL truck. As we can observe from Figure 2, radar returns
from two targets are noisy but have distinct features. Even
at a coarser scale, differences between two radar signatures
can be observed, and it demonstrates the importance of
coarser scale features in radar signal classification. Since
features at different scales are not observable from a sin-
gle scale, classifiers using multiscale features may improve
the classification accuracy. However, filtering and resam-
pling for obtaining coarser scale signals require more com-
putation. Fortunately, the hierarchical modeling approach
provides us a tool for computing features at coarser scales
without adding significant computational burden.

For radar signal classification, we used spectral features
extracted by fitting an AR(30) model to the radar signature.
Spectral features are frequently used in signal classification
applications, such as speech classification. Each radar re-
turn from a target has distinct spectral peaks caused by its
target shapes. Therefore, the spectral envelope of a radar
signature can characterize a target, and spectral peaks are
well detected by the AR spectral estimation method. How-
ever, AR spectral estimation approach also generates spu-
rious spectral peaks. The effects of spurious spectral peaks
can be removed by using features at different scales. Figure
3 shows the estimated power spectra which are estimated
by fitting AR(30) models to RAR signals in Figure 2. As
we can observe in Figure 3, the spectral envelopes of two
targets are quite different.

As discussed in Section 2, the signal at a coarser scale
follows an ARMA model if the signal at a finer scale is an
ARMA process. The model parameters at a coarser scale
can be obtained from the model parameters at a finer scale.
For extracting spectral features at a coarser scale, AR poly-
nomial for the coarser scale model should be computed. The
AR polynomials of the model at coarser scales (m=2,4,8,16)
are obtained by Theorem 1. The roots of AR polynomials
are good features for RAR signature classification, because
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spectral peaks are well detected by them. We choose two
pairs of dominant complex poles at each scale. The domi-
nant poles are selected by sorting roots of AR polynomial by
magnitude. Therefore, we have four features corresponding
to real and imaginary parts of two pairs of complex poles.
Since a radar return consists of even and odd polarimet-
ric signatures, features from both signatures are combined
{eight features). A minimum distance classifier is imple-
mented in the feature space using the Eucledian distance
measure to classify the RAR signatures.

Thirty-five (35) radar returns are classified by the mul-
tiscale classifier based on hierarchical modeling. Each radar
return consists of even bounce (LL) and odd bounce (LR)
polarimetric signatures, and each return has 128 channels.
Since each channel in radar return is from stationary tar-
gets, multiple channels are averaged to reduce noise in radar
signature. From each radar return, a training signal is ob-
tained by averaging outputs from the first 64 channels. The
test signal is obtained by averaging the remaining 64 chan-
nels. Then model parameters are estimated by fitting an
AR(30) model to each signal to extract spectral features.
At each scale, 8 features corresponding to the dominant
spectral peaks are extracted using the hierarchical mod-
eling approach. Radar returns are classified using features
from five different scales (m=1,2,4,8,16), In our experiments
with 35 RAR returns, 86 percent of the targets are correctly
classified.
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Figure 2. MMW radar returns (even bounce) from T-72
tank and ZIL truck.
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Figure 3. Power spectra estimated by fitting AR(30) models
to MMW radar returns in Figure 2.
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