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ABSTRACT

Determination of the surface quality of large reflector antennas
by direct methods like tape-theodolite has been revealed as not
accurate enough for millimeter-wave operation. Indirect methods
like holographic ones have been widely used. They are based on
the Fourier Transform (FT) relationship between the far-field
pattern and the field distribution in the aperture, whose phase can
be used to obtain the map of axial deformations of the paraboloid
by simple ray tracing.

Measurement of the pattern phase requires a second antenna-
receiver system and becomes difficult for high frequencies, so
the possibility of recovering the aperture field from only-
amplitude (or intensity) measurements of its FT (the pattern) has
been studied and applied in radio telescope measurements. We
present a discrete model for the aperture that enables us to
approach this problem from an array processing point of view.

1. APERTURE DISCRETE MODEL

Both, pattern measurement and data processing imply digital
processing, with the typical requirements and limitations:
sampling interval, size of the data window, etc. In our case, we
have the advantage that the function has a finite support in the
aperture domain, which is a kind of bandlimitedness. A first step
in the modelization is the establishment of a discrete model valid
for the representation of the continuous aperture, so that the
aperture and its radiated field are well represented by an
equivalent array.

We can start by considering the expression relating the radiation
integral P, a function proportional to the far-field pattern
radiated by a finite continuous aperture, with the complex field
in the aperture, E

P(r)= _L E,(r") exp(jkr’-r) ds’ M

where S, is the aperture extent, k = 21/A, r’ the position vector of
the element of surface to be integrated, ds’, and r the unit vector
in the observing direction.

If we consider just one component of the field polarization (the
other can be treated in parallel, if it exists), for example, linear in
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the y direction, and the aperture is located in the xy plane (z = 0),
we have the following expression:

P (u,v)= L E,(x, yexp(j2n (¥ u+ y'v)dxdyr @

where u=sinBcos® and v=sinBsin¢ are the director cosines of the
observing direction over the xy plane and x',y’ (in wavelengths) is
the position vector of the surface element to be integrated,
dx'dy’. (2) is a FT type expression. Py(u,v) or an(x’,y’) can be
sampled over a cartesian grid, yielding:

N-IN-1

Py(up WV, ) = mz:: ;an(x,’" Y )exp(jan(mup +nv, ))
mnp,q="01,..N-1 (3)

where d is the sampling interval in the aperture domain, in
wavelengths.

Since (3) provides the radiated field in the points of interest, the
continuous aperture can be replaced by an equivalent array of
isotropic elements placed over the planar grid, with weights
given by an(x’m,y’n). On the other hand, the two dimensional
Discrete Fourier Transform (DFT) of the array weights can be
calculated as:

=1

P(p,q)=:Z

=0n

£

=1

E(m,n)exp(j2n / N)(mp + ng))
0
mun,p,qg=0,1,.,N-1 (4)

this discrete finite function has period N in both p and g
variables, and is equivalent to (3) within one period if the
following equalities hold:

=2 . =1 (5)
“»“Na "1 T Nd
Then, the DFT of the array weights is equivalent to the sampled
array pattern with an interval 1/Nd=1/D, where D is the array
dimension in the direction of one of the axes, expressed in
wavelengths.
The physical meaning of P(p,g) will depend on the values
selected for N and d. If d=1/2, the visibility range (VR) coincides
with one period of P(p.q), if d<1/2, VR is smaller than a period
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of P(p,q) and if d>1/2, the usual situation, VR has more than one
period of P(p,q) which, for a real array means that the grating
lobes will appear. In our case we shall consider the measured
data window to be much smaller than a hemisphere, being
neglected the values outside the window.

2. PHASE RETRIEVAL. MISELL ALGORITHM

Phase retrieval algorithms are needed, in general, when the
operating frequencies are high enough to make the phase
measurements not practical. The two-dimensional nature of the
problem is an advantage, because the zero measure of the set of
reducible polynomials in two variables (to which Z-Transforms
of the field functions belong), guarantees the uniqueness of the
solution except for trivial ambiguities [1].

2.1, Iterative algorithms

A general phase retrieval scheme is depicted in figure 1. Its
main elements are: a coupled direct-inverse FT, two projections
(one in each domain) to force a priori physical and measurement
constraints and a feasible initial guess of the aperture field. An
underlying cost function of the form E= (IP}-IPI)? is minimised
and can be evaluated at each iteration as an indication of
convergence [2]. P; is the resulting pattern at iteration i and |P! is
the measured modulus. However, minimisation of cost functions
of the form:

E = (B[ -1PI) ©

is a natural generalisation to be further investigated in this
application, selecting optimum g and r. In this direction, Isernia
et al. [3] have shown the better behaviour of g=r=2 instead of
q=1, r=2.

The Misell algorithm, developed in electron microscopy, is one
of the most widely used in radiotelescope measurements [4].
This algorithm needs a starting aperture field with random phase
and ideal amplitude (the nominal for the antenna). It takes as
inputs two measured radiation patterns with different focus
settings, which correspond to the measurement constraints. The
physical constraints for this application are the aperture support
and the defocus amounts applied to measure the patterns. This
way, each iteration comprises two passings trough the loop of
figure 1, applying the corresponding measured pattern to the
current defocus.

2.2. Results from simulations

We present here results of a simulation representing a typical
situation in telescope measurements. The antenna is a Cassegrain
system (main reflector and subreflector which causes a central
blocking). D/f (diameter over focal length ratio) is 0.3. Two
defocussed maps with +1A and —1A axial displacement of the
secondary are generated over a 64x64 grid, to be taken as inputs
to the algorithm. Gaussian noise is added to have a signal to
noise ratio of 60 dB. The sampling interval is 0.8 times the
critical Nyquist interval, in order to avoid aliasing in the aperture
domain. The starting amplitude follows a gaussian profile with a
-8 dB taper. 50 iterations have been performed and the resulting
phases, in radians, are shown in figure 2.
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Figure 1. Phase retrieval block diagram

Note that, despite the high level of illumination at the edge
(which can be selected by a lens in front of the feed), the phases
are more noisy near this area than towards the center.

Figure 2 a) shows the retricved aperture phase for an ideal
antenna (constant phase across the aperture), with an rms of 4.2°
due to the noise in the "measurement”, as compared with the
ideal value of zero degrees. In figure 2 b), the antenna has a
phase distortion with sinusoidal shape in the y direction, 1 period
across the aperture and with a 30° peak which would produce a
rms phase of 21.2° which agrees very well with the rms phase of
23.1° of the retrieved solution. This is a realistic and simple
approximation to the distortions caused by gravitational
deformations.

2.3. Results from real data

In figure 3 we present results for the 14 m radio telescope at
Yebes (Spain), obtained after averaging three independent results
from Misell algorithm, taking different input patterns measured
using the 49.49 GHz beacon for propagation studies of the
geostationary satellite Italsat. Horizontal and vertical scales are
in meters, amplitude contours are 5% to 95% in 10% intervals.
An outline on the component panels is shown together with the
phase map. The antenna is Cassegrain, with a 13.72 m diameter
primary, a 1.085 m secondary, a D/f of 0.37 and, because we
measure at the top end of the frequency band of our 7 mm
receiver, the illumination taper is -16 dB. Sampling interval is
72" (0.79 that of Nyquist).

The pattern pairs .used for the three results have the defocus
values, (+1.6,-0.6)A, (+0.8,-0.6)A and (0.0,+1.6)A. A zero
padding is made on the 32x32 pixel measured patterns to get
64x64 elements results. A circular window of 12 pixel radius
was applied to all radiation patterns in order to remove noise and
radome effects. The size of the window was selected as a
compromise between the removal of these error sources and the
loss of resolution.

Each independent result was obtained after averaging 5
repetitions of the Misell algorithm on each pattern pair, with
different random initial phases, 500 iterations each repetition.
Then, the three independent results were averaged again. The
first averaging step tends to reduce noise in the following two
ways: averaging is equivalent to low pass filtering, and the
“locked” individual results tend to be randomly distributed
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b)

Figure 2. Resulting phases of simulations:
a) Perfect antenna, b) Distorted antenna

around the global minimum of the cost function [4]. The second
step, in addition, forces different measurement constraints on the
algorithm and tends to eliminate possible effects caused by the
particular characteristics of a single set of constraints.

The phase solution is fairly good in all zones where the
amplitude is high enough (otherwise the phases are random, not
significative) and very similar in all the individual results, so we
can conclude that the large scale errors (> 2 m) are recovered. It
is important to note that the circular windowing improves the
results, making them less noisy, of better visual quality and more
reliable: we can see now the “hole” corresponding to the
secondary blocking, absent when the window was not applied
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Figure 3. Results for the Yebes 14 m antenna

(the bad pointing of the feed can cause the slight offset
downwards from the center, see figure 3). The phase depression
observed at the lower right edge of the reflector is related to a
panel tilt forced on the surface for qualitative testing of the
algorithm.

Final rms phase is 37° (rms surface axial deviation of 313 um),
which would cause an efficiency multiplicative factor of 65% at
49 GHz assuming a random distribution of the errors, but in fact,
as their shape reveals a systematic deformation (gravitational),
the factor is worse, around 50% at 43 GHz, as can be deduced
from efficiency measurements made on planets.

3. ARRAY PROCESSING APPROACH

As stated in point 1, we have an array model for our continuous
aperture, so we can use the powerful tools of array processing to
solve the posed problem: find the array which matches the
pattern or patterns at the measured points plus all the possible
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Figure 4. Procedure block diagram

constraints considered. This can be stated as a beamforming
problem in which phase solution for the elements is capital,
arising the difficulties from the lack of pattern phase
information.

3.1. Further considerations

Due to the circular shape and polar arrangement of the panels of
most reflector antennas and the improvement reached with
circular masking on real data, performance of an equivalent polar
array is being analysed. Despite the fact that it is easier to
measure the pattern around the main beam in a cartesian grid,
due to the tracking system of most large antennas, we can
interpolate the measured data to have a polar grid and work with
a polar-based algorithm [5]. The loss of computational efficiency
is not determinant because we are processing off-line. This
problem would be serious in a hypothetical active system which
continuously measured and adjusted the surface of the antenna.
A further step is to find an array with ideal elements (nominal
amplitude of the antenna for each position and uniform phase),
but with three dimensional displacements from the original point
in the grid calculated to match the previous regular array. In this
way we will have a geometrical indication of the deviations that
cause the errors of the wave front in the aperture using array
techniques instead of the previously used ray tracing. The
coarray concept [6] is useful to develop this step.

3.2. Measurement-adjustment procedure

The final goal of this study is to settle a measurement-
adjustment procedure with the following steps:

1) Measurement of the amplitude or power radiation patterns on
a prescribed grid.

2) Calculation of the equivalent array on the corresponding
regular grid, for the real antenna.

3) Determination of the positional modifications needed so as to
have an equivalent array of ideal elements.

4) Calculation and application of the correction to the real
antenna.

The procedure is iterative, returnig to point 1) to check the
adjustment made in 4) and proceeding until the required quality
is reached.

A block diagram of this procedure is shown in figure 4.
Implementation of step 4) from 3) implies a univocal matching
between the resulting element displacements and the geometrical
corrections on the antenna, which can be performed in two ways:
by readjusting the z position of the screws supporting the
individual primary reflector panels or by reshaping the
secondary.
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