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ABSTRACT

The effects of memoryless (no feedback) amplifiers with ampli-
tude non-linearities on the output of transmit beamforming arrays
is studied. These studies are limited to “small signal” cases where
the output signal is not undergoing significant compression by the
amplifier; and where the amplifier non-linearities can be approxi-
mated well by a cubic polynomial [1]. The performance of three
“optimal” beamforming techniques [2-4] are compared and con-
trasted when both linear and non-linear amplifiers are used in a
two dimensional array. The two dimensional array considered is
designed to simultaneously transmit two narrow band signals, at
different frequencies, through a common aperture. Attention is
focused on the non-linearity induced interaction of the stimulus
signals, and the effect this has on the array’s outputs as a function
of beamforming technique.

1. INTRODUCTION

This paper studies some of the effects of final stage amplification
on beam patterns from transmission arrays. In particular, we
concentrate on the effects that amplitude non-linearities, inherent
in the final stage amplifiers, have on these patterns. The problem
considered here is one in which two narrow band signals of
different frequency are to be transmitted through the same array
aperture. That is, the array aperture is not split, but is shared in a
non time multiplexed fashion by both signals. This might be done
in small arrays to achieve maximum aperture for each signal
without sacrificing dwell time. A simplified diagram of the signal
paths for a single array element is shown in figure 1.

Since, in general, the desired output beam pattern will be different
for each frequency, there will be a separate set of weights
(amplitude and phase) for each stimulus signal. In this study, the
multipliers, summers and array elements themselves are assumed
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ideal; and the computations are done to 32 bit floating point
precision. This is done in order to focus attention primarily on the
effects of the amplifier non-linearities. Effects due to
quantization, anisotropic elements, element positional errors, and
element cross loading were reported in earlier work for non-
shared aperture arrays [5]. Similar results for shared aperture
arrays are not reported here.

As stated, we will limit ourselves to the “small signal” case and to
cubic approximations to the amplifier amplitude non-linearities.
No other amplifier non-linearities are considered (e.g. the cross
modulation, group delay, and AM to PM varieties). Starting from
these assumptions, we develop an amplifier model and calculate
the effects it has on the beam patterns produced by three well
known “optimal” beamforming techniques. The beam formation
techniques considered are outlined in the references [2-4].

It was found that the amplifier non-linearities produced
undesirable effects for each of the beamforming techniques
tested. However, some of the techniques proved more sensitive to
the influences of the non-linearities than others. This sensitivity
manifests itself in the amplitude of the unwanted harmonic and
inter-modulation frequencies which result from non-linearities in
the amplifier, and in the suddenness of occurrence of these effects
as the beams scan in space. The amplitudes of these unwanted
frequencies can be significant, even for “small” stimulus signals.
Typically, it was the techniques which did not necessarily employ
a smooth phase progression (ie. a small number of phase wraps)
across the array aperture [3,4] which were the most sensitive to
these effects as the beams scanned.

The array studied here is a 2 by 17 element rectangular array with
uniform element spacing in both dimensions. Each of the
elements is modeled as having a cosine shaped element pattern.
Although we only consider a transmit array in this paper, similar
effects should be seen when two signals close in frequency and
signal strength arrive at a receive array aperture in which non-
linear amplifiers precede beam formation (summation).

2. THE AMPLIFIER MODEL

Under the assumption of ideal multipliers and summers, the sig-
nal present at point Py in figure 1 is given by:
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If the amplifier were linear then the signal present at point P,
would be:

( j(@1+0,+9))
1-‘2 =a rlAle +-r2A2

where « is the slope (gain) and B is the (constant) ordinate inter-
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cept; taken here as zero (no power in no power out). For real stim-
ulus signals (and B = 0), equation (2) could be written as:

Py = a(riA cos (@,1+®,) + 14,008 (0 +Py)) 3)

where @, = 8,+¢,,i=1,2. For an ideal antenna element, equation
(3) would be the transmitted signal. We assume that the stimulus
signals at frequencies o, and o, are un-modulated in amplitude
and phase, and constant across the array; and also that each
amplifier has the same « .

Let v, be the signal input to a memoryless amplifier with ampli-
tude non-linearities. From equation (3) above, this input signal
may be expressed as:

V, = r A cos (@,1+ D)) +ryA,co8 (0,0 + D) )

Let v, be the signal output from the amplifier. Assuming a cubic
approximation to the amplitude non-linearities we have:

V, = VeV + bV, 5)

where the k,,i=1,2,3 are the coefficients which describe the cubic
polynomial representing the amplifier transfer function. These
may be readily calculated via. intercept point analysis for a partic-
ular amplifier {1]. Note that for a linear amplifier, ¥, = @ from
equation (3) and k, = k, = 0. Expanding equation (5) in terms of
equation (4) results in equation (6).
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By examination of equation (6) the reader can determine the role
of the coefficients, array tapers, steering phases, and stimulus
amplitudes in corrupting the output signal. In particular, note the
effects of the coefficients. High gain amplifiers generally have
large coefficients, especially in the quadratic and cubic terms.
High values in these terms can significantly raise the power of the
unwanted harmonics and intermodulation products, even for
small input signals.

Often the most troublesome frequencies are the intermodulation
products defined by 20,-o, and 20 -@,. When o, and o, are
close in frequency these intermodulation products can be within .
the pass band of the amplifier; and if &, is too large, these terms
can have significant amplitudes. Note also that a large &, can cor-
rupt the beams formed at the fundamental frequencies o, and o,

as well.

3. RESULTS

Figures 2 and 3 illustrate the phase steered, Dolph-Chebyshev
weighted (30 dB side lobes), beam patterns resulting from the two
fundamental frequencies indicated in the figures (refer also to
equation (6)). The steered angles are -10 degrees OBA (Off
Broadside Angle) azimuth, 0 degrees OBA elevation for lambda
= 2.02: and 20 degrees OBA azimuth, 0 degrees OBA elevation
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for lambda = 2. These patterns are not substantially different from
the corresponding ideal patterns (not shown). Note that the wave-
lengths are given in terms of element spacing, and recall that the
elements have a cosine element pattern. Figures 4 and 5 illustrate
beamn patterns of the intermodulation products defined by
20,-o, and 20, -, . Figure 6 shows a composite plot of slices
in azimuth through the maximum of a given beam pattern for all
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harmonics and intermodulation products generated by equation
(6). Figures 7 and 8 show composite plots for the Constrained
Weighted Least Mean Square (CWLMS) (3] and maximum gain
[4] techniques respectively.

There are several options for controlling the spurious emissions
of the array (ie. those resulting from harmonic and intermodula-
tion frequencies). Two will be considered here. The simplest
approach to reducing the magnitude of the spurious beams is to
reduce the level of the driving voltage at the input to the power
amplifier. As the amplifier output power recedes from saturation
(maximum output power), the harmonic and intermodulation out-
puts of the amplifier reduce rapidly. For every one dB reduction
of the input power, the second order harmonic and intermodula-
tion products reduce by 2 dB while the third order products
reduce by 3 dB. Recall that the third order intermodulation fre-
quencies 20,-©, and 2e¢, -, are the ones most likely to be
within the pass band of the amplifier. Obviously, this approach
also reduces the power radiated in the desired beams, but at a one
to one input/output ratio.

One method to compensate for this loss in output power is to
increase the array aperture via additional elements. Note, how-
ever, that to achieve an additional 3 dB in radiated power in this
manner requires a 41 percent increase in the number of active
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array elements. These additional elements add cost and weight to

the array, and require more prime power.

An alternative approach to decreasing the input power is to
increase the amplifier’s second and third order intercept points
without changing its gain or maximum output power. If this is
done, the intermodulation products will be reduced without
changing the radiated power at the desired frequencies. The sec-
ond order products will be reduced one dB for every dB the sec-
ond order intercept is raised. The third order products will go
down 2 dB for every dB the third order intercept is raised. This
effect is illustrated in figure 9 for the Dolph-Chebyshev case.
Comparing figure 9 with figure 6 we see a 3 dB reduction in sec-
ond order spurious beams and a 6 dB reduction in third order spu-
rious beams due to a 3 dB increase in both intercept points. The
same effect is observed in the spurious response patterns of both
the CWLMS and maximum gain techniques.

4. SUMMARY AND DISCUSSION

The effect of amplitude non-linearities [1] present in the final
stage amplifiers of a two dimensional transmit array on resulting
beam patterns was presented. The focus of this study was the
magnitude and distribution of spurious frequency beam patterns
resulting from the simultaneous transmission of two narrow band
signals, closely spaced in frequency, through a common array
aperture. The results were presented as a function of beam form-
ing technique [2-4]. The studies were limited to the “small signal”
case in which the signals output from the amplifiers were not
undergoing significant compression. Further, non-linearities such
as cross modulation, group delay and AM to PM conversion were
not considered.

The results indicate that while the non-linearities produced signif-
icant unwanted spurious frequency beam patterns in each of the
techniques considered, the CWLMS and maximum gain tech-
niques [3,4] proved more spatially sensitive to the amplifier non-
linearities. This is thought to be due to the tendency of these tech-
niques to design rapid phase fluctuations into their weight vectors
when called upon to produce narrow beam widths (high gain) for
a given side lobe level.

Two methods for reducing the magnitude of the beam patterns of

the spurs were also outlined. Clearly, of the two proposed meth-
ods, the most effective means of reducing the spurious beam level
is achieved by improving the power amplifier’s intercept perfor-
mance. Reducing the stimulus drive level is an option for applica-
tions where array size, weight and power consumption are not
critical factors.

A third method for reducing spurious frequency beam patterns, in
particular azimuth and elevation directions for specified frequen-
cies, may be possible. In this method, point nulls for pre-deter-
mined azimuth and elevation directions and for spurious
frequencies of interest are designed directly into the primary
beam weight vectors produced by CWLMS. That is, the CWLMS
algorithm [3] is modified to allow directional null placement at
frequencies other than those of the desired transmission fre-
quency.

Preliminary calculations indicate that this approach might be
fruitful, but studies have not gone beyond this point at this time.
In any event this nulling approach is practical only if one can
identify the angles where spurious beams must be controlled; and
this, in turn, would be highly application dependent.
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