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ABSTRACT

We present in this correspondence the analyses of the inter-
ference coherence effects on the performance of antenna ar-
ray processor, which maximizes the output signal-to-noise
ratio (SNR) for a coherent wave. The analytical expres-
sion for the optimal weight vector, directional pattern and
output SNR is derived as a function of the coherence coef-
ficient, interference power and parameters of the adaptive
processor. We show how different models of interference co-
herence affect the array performance. Finally, to illustrate
the theory, several numerical results are given.

1. INTRODUCTION

A concern wrich arises, when considering the use of a very
large aperture in order to achieve high array gain, is that
the signal received at widely separated sensors may have
reduced coherence due to complexities in the propagation
of the sound waves from the source to spatially separated
receivers. Causes of distorsions are very diversified: they
are usually of two types. The first type relates to mechani-
cal deformation of the array. The second type is inherent to
the propagating medium. Actually, the medium is neither
isotropic, nor homogeneous, nor deterministic. Different
causes of perturbation of the propagation are for instance
the existence of multipaths, local héterogeneites and diffu-
sion.

The effects of the signal coherence on the performance
of optimum/adaptive beamformers have been studied by
many authors {1-7]. Cox, using a simple exponential corre-
lation model to describe the coherence of a plane-wave sig-
nal, examined the effect of signal coherence on the signal-
to-noise ratio (SNR) gain of a line array. More recently,
Morgan and Smith studied the effect of coherence on the
detection performance of linear and quadratic array pro-
cessors using an exponential-power-law model for the signal
wave-front correlation in the uncorrelated noise field. How-
ever, the detection performance of an optimum/adaptive
array may be substantially degraded also in the case of the
interference coherence reduction.

The purpose of this paper is to examine the influence
of reduced interference coherence on the performance of an
adaptive processor, which maximizes the output SNR for
coherent signal and interferences [6-9]. For simplicity, the
single interference case is studied. The spatial coherence
of the interference is assumed to fall off exponentially with
separation of the elements. Analytical expressions for the
optimal weight vector, directional pattern and output SNR
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are derived in terms of the interference coherence coefficient,
interference power and parameters of the adaptive proces-
sor. It is shown that the performance of optimal/adaptive
beamforming is substantially degraded for large arrays and
typical coherence lengths.

2. PROBLEM FORMULATION

We consider a passive array having N sensors. We shall
be limited by the assumptions that the array is linear, and
the sensors are omnidirectional. The noise is assumed to be
statistically independent from element to element. Besides,
we shall assume that desired signal is fully coherent on the
aperture of array. The N-dimensional complex vector W
represents the N optimal weights of the array processor
which maximizes the output SNR. A well-known expression
for W is given by [7-9]

W = bR S5, 63

where b is a constant, the superscript * denotes complex
conjugate, So is an N-dimensional vector of the desired sig-
nal, and R is the array correlation matrix of the uncorre-
lated noise and interference alone, given by

R=0j1+Q, (2

where Q is the array correlation matrix of the interferences
only, I is an identity matrix and o2 is the power of the
uncorrelated noise in each element. For a coherent wave,
the correlation matrix of each single interference is written

Q=ois:iSF, (3)

where o7 is the received single interference power per ele-
ment, the superscript A denotes complex conjugate trans-
pose and S is the Green’s- function, vector describing the
propagation of the interference to each element, normal-
ized such that S¥S; = N. This normalization is consistent
with conventional plane-wave beamforming, whereby the
components of steering vectors are unit-magnitude complex
numbers. The rank of Q is equal to the number of inde-
pendent interferences. A loss of interference coherence will
degrade the ideal interference correlation matrix (3), so that
the magnitude of the terms in the interference correlation
matrix diminish away from the main diagonal, eventually
going to zero for very large distances. In the general case,
the interference correlation matrix Q has full rank even for
a single interference. For a weak noise power the inverse
correlation matrix R can be expressed as
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R'=Q™'+E,

where E = —02Q™2. We shall assume for the small uncor-
related noise:

IQI>edliTl  and Q7> |IEI, (4)

where |||| is the matrix spectral norm. (The spectral norm
of a matrix A, which is induced by the Euclidian vector
norm, is given by the square root of the largest eigenvalue
of A¥ A). Then the inverse correlation matrix R™! can be
expressed as

R'=Q'(I-02Q7"). (5)
From (1) the weight vector can be written as
Wooe = b{I-03Q"'}Q7'Ss. (6)

Taking only the first term of Eq.(6), we can obtain the
following approximation for the weight vector

Woe = Q™1 S5, (1)

Now the well-known expression for the output SNR is de-
rived. Thus, in general case the output SNR is given by

SN Rou = 0(S§TR™'Sy) 7, (8)

where o? is the desired signal power. Using Eq. (5) we
obtain for the output SNR

SNRou: = o2 {SFQ (1 03Q1)S,}. (9)

3. INTERFERENCE COHERENCE
INVESTIGATION

For simplicity we shall consider the case of a single
strong interference. In order to introduce a decrease in
interference coherence, with an increase in element sepa-
ration, we shall consider an exponential dependence of the
form

ax = ezp{5(1 - k)u:}pl ), (10)
so that po is the coherence between adjacent sensors, where
u; = 2wdsind; /A, ) is the wavelenght, d is the interelement
distance, ¢; is the angle of arrival of interference in the
absence of reduction of spatially coherence. Typically po
might be expected to depend on the separation betiween
elements measured in wavelenghts such as

pPo = ezp{(—d/L}}, (11)

where L is a characteristic correlation length. It is impor-
tant to understand that the interference model of Eq.(10)
specifies the interference coherence between all pairs of ele-
ments in terms of the coherence between adjacent elements.
Note that the form of the decorrelation coefficient between
sensors appears to be independent of the interference direc-
tion. In most situations, the decorrelation between elements
is strongly direction dependent. In these situations, the in-
terference coherence coefficient po is a function of the angle
of arrival ;.

Using matrix notation, the interference correlation ma-
trix Q under the above formulation is expressed as

Q = o}F*PF, (12)

where o? is the interference power per element and P is the
correlation matrix whose components are defined as

— li—kl
Pik = Pg )

and
F = diag{1, ezp(ju;), ..., ezp((N — 1)ui)}

is a diagonal matrix. Using Eq.(12) the inverse matrix Q~*
is given by

Q! = (1/o})F*P-1F, (13)
where the matrix P~! can be written as follows [12,13]

1 ~po 0 e 0
—po 1+4p5 ~po - 0
P—l = 1 = : . :
1-— P2 M ) .

0 o —po l+pp —po
0 0 R 1

Then for the steady-state weight vector from (6) we obtain
2
W, = (b/a?){F*P1FS; - ;—%F‘P'IP'IFSJ}. (14)
Taking the first terms only, we can write

W = (b/0?)F P~1C, (15)

where C is a N-dimensional vector defined as
C =TFS; = [1,ezp(j(ui - 1,)), .., ezp(§(N = 1)(ui — uz))];
16
where u, = 2xdsinf, /), 8, is the angle of arrival of the de-

sired signal. Note that for the array processor which maxi-
mizes ocutput SNR the constant b is given by [7)

b=o2. (17)

Then from Eq.(15) we can obtain the following expressions
for the components of the weight vector

1 .

wo= gy 1 peesplilu - w)),
1 .

wg = m{_m“}’“(k—l)u;)

+Q1 +p§)ezp(j(k — Dus) — poezp(j(kus — (k - Dus))},
k=2,---,(N=-1) (18)
1

Sy 1~ poema(—sus = wa))},

wNo= vi(1

2
where v; = ;—5 It will be further assumed, in order to sim-

plify the ca.lcleation, that desired signal power is uniform
over the array, so that §, = 0. Then from (18) for w; one
can obtain

1 .
R T
1
T o U stk =,
k=27:(N_1)(19)
1 .
R S A AA A

vi(
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From (18),(19) we can derive the main characterictics of the
adaptive processor. In particular, if u, = 0 the expression
for directional pattern of the adaptive array in the interfer-
ence direction can be written as

Lo(wi) I? WP =

N
= |Zw;ezp(j(k -Du)f = (20)
= (/w1 -p3))If () +
+(p5 — 2pocos(k — 1)ui) fr(ui) -
—po(ezp(—jus) + exp(i Nui))[*

where

flui) = Yum, exp(i(k — 1)ui,
filu) = 20t ezp(i(k — Nw

For isotropic interference {po — 0}, the directional pattern

is given by
Fg(ui) 1= (1/wi)l f (i)l

Now we derive the expression for the output SNR. Using
Eq.(9) and (13) the output SNR in the first approximation
can be written as

SNRow = (02 /e){SEF P-1F 5}, 21)

which describes the behavior of the output SNR as a func-
tion of the coherence coefficient, number of elements in the
array, output SNR of the optimal processor. From (21) the
expression for output SNR is given by

SN Ro

SN Roue = ot
T Nui(1-p3)

{N + (N —2)pé — 2po(N — 1)cosu;},
(22)

2
where SNRy = Ny = N%& is the output SNR of the op-

timal processor. From (22)othe following observations can
be made. 1) The output SNR is a monotonically decreasing
function of the power of the interference, the coherence co-
efficient and the angle-of-arrival of the interference. 2) For
the same coherence coefficient, the output SNR falls more
rapidly by higher values of interference power. 3) For an
array with a very large aperture ( N » 1) from (22) the
output SNR can be expressed as

1
SNRou: = SNRy T =70)
One can see that output SNR depends only on the coeffi-
cient of coherence between adjacent sensors po. Note that
expressions (22)-(23) are correct, if the conditions (4) are
granted. It is easy to show that the conditions (4) can be
written as follows

(1 — 2pocosui + p3).  (23)

>l w(l-p)>1 (24)

From (24) one can see that expression (22) is not correct
if po = 1 (the case of full coherence on the aperture ) be-
cause the matrix Q degenerates (has the dyadic structure
(3)). For this case the output SNR is given by well-known
expression [14]

SNRowe = SNRo(1 — (Nwi/(1 + Nvi))If(w)]).  (25)

The dependence of normalized output SNR (SN Rou: /SN Ro)
as a function of the coherence coefficient po is shown in Fig.1
for a ten-element line array for various values of the input
interference power for §; = 30° ( curve (a) corresponds to
v; = 10dB, curve (b) - »i = 16dB, curve (c) - »; = 20dB).
The solid lines are given dependence, which computes from
(22), the dashed lines are given exact solutions, which are
obtained by computer inversion of the correlation matrix R.
From fig.1 one can see, that for strong interference (curve
(c)) we have a good agreement between exact and approx-
imate solutions for almost all values of the coherence coef-
ficient po .

4. OTHER MODELS OF COHERENCE

In this section we analyze how different models of in-
terference can affect the linear array performance.

An exponential-power-law model [15] will be assumed
for the signal coherence, whereby the correlation between
the 1 — th and j — th element of an equally spaced linear
array is written as

p(z) =exp{~(Id—k|/L)"}, (26)

where the exponent-power r is a parameter that typically
varies between 1 (exponential) and 2 (Gaussian) [16,17].
Thus values of r < 2 will be of most interest for the present
application. The dependence of normalized output SNR as
a function of a characteristic correlation length L expressed
in element spacing units is shown in Fig.2 for ten-element
linear array for various models of coherence function for
6; =30°, v; = 20d B (curve(a) corresponds to r = 2, curve
(b) - r = 1.5, curve (c) - r = 1). From fig.2 one can see that
increase of parameter r leads to increase of the output SNR
especially for a characteristic correlation length L in order
of size of the antenna aperture (L/d = N). For very small
L the difference in the output SNR for various models is
insignificant. Note, that the differences in the output SNR
for various models and the characteristic correlation length
L and aperture size N are small.

10 12 14 16 18 20

Figure 1: Dependence of (SN Rou: /SN Ro) (dB),
as a function of coefficient p = 20 * po, N = 10, 8; = 30°.
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5. CONCLUDING REMARKS

The use of the exponential model makes it possible to eval-
uate the number of adaptive processors maximizing the
output SNR. Analytical expressions for the optimal weight
vector, directional pattern and output SNR are derived in
terms of the coherence coefficient of interference, the in-
terference power, and the parameters of the adaptive pro-
cessor. The different models of interference coherence are
studed. It is shown that the detection performance of adap-
tive beamformer is substantially degraded for large arrays
and typical coherence lengths. The different models of in-
terference coherence are studed. Several numerical results
are given.
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Figure 2: Dependence of (SN Rout/SN Ro)(dB),
as a function of a characteristic correlation lenght L.
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