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ABSTRACT

This paper presents a new set of derivative constraints for
the generalized sidelobe canceller (GSC) that can be used
to reduce sensitivity to steering error. These constraints
are designed to flatten the spatial null of the GSC blocking
matrix so that for a small steering error, the desired signal
is still blocked and the GSC does not experience signal can-
cellation. With this approach, the steered response of the
GSC can be forced to locally approximate any realizable
fixed-weight beampattern. A related set of constraints can
be used with the eigenvector constraint calibrated GSC to
control the steered response for use in the presence of array
errors.

1. INTRODUCTION

The generalized sidelobe canceller (GSC) is a form of lin-
early constrained minimum variance (LCMV) beamforming
[1]. LCMV beamformers can provide higher output signal-
to-noise ratio (SNR) than fixed-weight beamformers when
noise statistics are either time-varying or unknown. Un-
fortunately, LCMV beamformers (including the GSC) tend
to be sensitive to signal model errors, especially when the
input SNR is high {2]. Sensitivity to steering error results
in a very narrow mainlobe steered response for the GSC
compared to fixed-weight beamformers.

One way to improve robustness to direction error is to
use derivative constraints to flatten the power response of
the GSC in the look direction. Buckley and Griffiths [3]
extend Er and Cantoni’s work in [4] to an adaptive frame-
work, and show how to implement the constraints using the
GSC form of the LCMV beamformer. They also show that
these constraints result in a beamformer with the undesir-
able property that the beamformer performance depends on
the array spatial reference point (or phase reference). In [5],
Tseng notes that the phase reference dependency is caused
by an unnecessary constraint on the beamformer phase re-
sponse. Tseng eliminates the phase reference problem by
constraining only the power response and not the phase
response. Thng, Cantoni, and Leung present similar con-
straints in [6]. In (7], Tseng and Griffiths extend the work
in [5] for derivative constraints above 2nd order. In order
to implement these power response derivative constraints
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for nth order derivative constraints (n > 2), nonlinear min-
imization is required to determine the constraint values of
the linear comstraint equations.

This paper considers the magnitude response of the spa-
tial blocking filter in the GSC rather than the overall mag-
nitude response of the GSC. Reduced sensitivity in the look
direction for the GSC can be obtained by flattening the null
of the spatial blocking filter. Thus, for a small steering er-
ror, the desired signal is still blocked from entering the noise
cancelling path, and the GSC output is approximately the
same as for no steering error.

These constraints result in a GSC steered response that
can approximate any realizable fized-weight beamformer re-
sponse near the look direction while still suppressing side-
lobes. Thus, the array designer can first select a fixed-weight
beamformer that has the desired robustness to steering er-
ror, then apply erough spatial blocking filter derivative con-
straints so that the GSC steered response adequately ap-
proximates the fixed-weight beampattern. The eigenvector
constraint (EVC) calibrated GSC [8] can be modified to in-
corporate constraints that are similar to spatial blocking fil-
ter derivative constraints, and which allow steered response
control in the presence of array errors.

In a related approach, Claesson and Nordholm [9] sug-
gest widening the null of the spatial blocking filter by using
an equiripple approximation of a flat stopband rather than
by using derivative constraints. We note that some of our
theoretical results should hold (in a qualitative sense) for
this particular choice of blocking matrix.

2. LOOK DIRECTION DERIVATIVE
CONSTRAINTS FOR THE GSC

This section derives look direction derivative constraints de-
signed specifically for the GSC. The output at time k of an
M-channel, L-tap GSC with A constraints is given by

y(k) = (ws = Bwa(k)) " x.n(k) (1)

where the ML x 1 vector wy forms a fixed-weight beam-
former, B is an ML x ML — K matrix that blocks the
desired signal, and wa(k) is an ML — K x 1 noise can-
celling filter that adapts to minimize total output power.
The input to the GSC is a stacked snapshot vector, con-
sisting of the M x 1 array output vector at L consecutive
times: Xon(k) = [xT(k),...,xT (k= L+ 1)]*
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In order to minimize signal cancellation caused by steer-
ing error, the objective is to flatten the spatial null for each
column of the blocking matrix B. Let b represent a single
column of the blocking matrix B. Then the response r(w, )
of the spatlal filter b to a monochromatic planewave signal

a(w, 8) is given by r(w, §) = bHa(w, 8). The power response
of b is then given by

H(w,8) = |r(w, 8)]> = bYaa"b (2)

The following theorem relates the amount of flattening of
the spatial null to a set of orthogonality constraints:
Theorem 1. Let N > 0 be an integer. Then

O™ H(w, )

L2N 41
0m 2N+

= 0, n=0

lﬁ b_l_do(w,eo),...,dN(w,eo)

where dn(w, 80) represents the nth partial derivative with
respect to direction of the direction vector a(w, ), evaluated
in the direction 0.

Proof: Proof follows from recursive application of the prod-
uct rule for derivatives of products. O

Next, we want to consider the steered response of the
GSC after applying these derivative constraints. Assume
that the array receives a broadband signal from the direc-
tion 8o in the presence of white sensor noise. The following
theorem relates the orthogonality constraints to the behav-
ior of the GSC steered response for the worst case environ-
ment {consisting of desired signal only plus additive white
sensor noise). In this theorem, the GSC is assumed to have
an orthonormal column blocking matrix.

Theorem 2. Let the array output power spectral den-
sity matriz be given by Piz(w) = 0%l + a(w,8)a®(w, ).
Then G,y (w,8) converges to Fs(w,8) as N — ML, where
Gy (w, 8) is the steered response of the GSC with blocking
matriz B satisfying the following N + 1 orthogonality con-
straints:

B*Dy(w,60) = 0

where DN(w, 90) = [do(w, 90), ceey dN(w, 90)]

Note that as more orthogonality conditions are added,
the blocking matrix B loses columns (less degrees of free-
dom). Obviously, B will eventually lose all columns, leading
to a beamformer that is equivalent to a conventional beam-
former. Thus, the convergence is applicable only while de-
grees of freedom are available.

Proof: Let the correlation matrix at a given frequency w
be given by Ruz(6) = 021+ a(6)a” (). Then the GSC and
fixed-weight beamformer steered responses are given by

Gs(8) = (wy—Bwa(8)"Raa(8)(ws — Bwa(6))
Fu6) = wWiRa.o(8)wy (3)
Define Ty as Ty = a™ (§)Bwa(§). Then, using B¥w, = 0,
one may obtain
IG.(6) = F.(9)] < |Tol® +2|wia(6)| [Tl
+ oiwl(69)B¥Bw,(9) (4)

Next, approximate a(8) with a Taylor series expansion about
0o as follows:

a(d) = Zd 00) LS ne, ) (5)

where A(6, N) — O either as N — oo for a given § or as
6 — 6y for a given N. Assuming that B satisfies the N +1
orthogonality conditions BEDy =0, Tp is given by

(Z dn(0)"

= af, N)Bwa(e) (6)

Ty

H
E=%)" | Ao, N)) Bwa(6)

This implies that

Gan(8) = Fo(6)] < |A%(8, N)Bwa(9)[* + o2 [ Bwa(9)|?

+ 2|wfa(9)A™(9, N)Bwa(0)] (1)
Next, assume that the adaptive weight vector is at the op-
timal value:
wa(§) = (B¥R..B)” B¥R..w;
= (BY(0%1+a(8)a"(4))B)'B
x (a7l +a(8)a™ (8))w;
1
= = (T+B"A(8, N)a¥ (s, N)B)
x (BTA(8, N)a (9)w) (8)

-1

From (8), ||wa(8) || — 0 either as N — oo for given 8 or as
8 — 8 for a given N. Combining this result with (7) proves
the desired result. Since A(#, V) is in the first two terms of
(7), part of the convergence is a consequence of the orthog-
onality conditions directly, and part of the convergence is
due to the orthogonality conditions forcing ||wa|— 0. O

Theorem 2 implies that by using spatial blocking fil-
ter derivative constraints we can force the GSC steered re-
sponse to approximate the fixed-weight beamformer steered
response in the vicinity of the look direction. Although
the convergence eventually ends (when the blocking matrix
runs out of columns), simulations show that even for fairly
small arrays (11 sensors), the mainlobe steered response of
the fixed-weight beamformer can be closely approximated
while still suppressing sidelobes almost as effectively as the
GSC without derivative constraints.

3. COMBINING DERIVATIVE CONSTRAINTS
WITH CALIBRATION

The spatial blocking filter derivative constraints presented
here can be used directly with channel equalization (CE)
calibration [10] since the array errors are corrected by fil-
tering prior to the data reaching the GSC. An alterna-
tive method of calibration for the GSC is the EVC cali-
brated GSC [8]. A method of applying spatial blocking
filter derivative constraints compatible with the EVC cal-
ibrated GSC is to include calibration data from directions
near broadside along with the broadside calibration signal.
Thus, the blocking matrix is forced to pass directions near
broadside, effectively flattening the spatial null of B. In
practice, these point constraints are similar to using deriva-
tive constraints to flatten the spatial null. The basic proce-
dure is a simple extension of the EVC calibration procedure
presented in [8], and is outlined below.

Record N >> M L stacked snapshots of a wideband cal-
ibration signal from the look direction 6o, and let the N x
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M L data matrix Xo be given by Xo = [X4n(1),..., Xsn(N)]T.
For a perfect planewave without array errors, rank{X,} =
L. Repeat this procedure for directions 81,...,0x,_1 in the
vicinity of the look direction, with the array steered to 6o,
and construct Kj — 1 data matrices X;,...Xx, ~1. Let the

N Ky xM L matrix X be given by X = [XOT,X’lr, et ,XF‘IE—I_,]T.

Due to a combination of direction errors and array errors,
X will be full rank. Next, solve for the ML x ML — K
blocking matrix B.q; that maximally blocks the calibration
data. In other words, B.q should have a maximally flat
spatial/spectral null in order to block perturbed direction
vectors in the vicinity of broadside over a frequency set that
effectively spans the desired signal subspace.

Let the singular value decomposition (SVD) of X be
given by X = UZVT, where 01 > 02 > ... > oz Using
the properties of the SVD [11], the rank ML — K matrix
Bea: that minimizes || XBea: ||% and the rank K passing
matrix Pco; that maximizes || XPa |[% are given by

Pcal

= [vi,...,VK]
Bcal =

[Vi41,. .., vzl

The fixed-weight beamformer that best approximates wy is
given by wycar = Pca P, wy.

While Theorem 1 is not used to achieve zero deriva-
tives of the blocking filter spatial null, the basic result of
Theorem 2 still holds. In other words, by using calibration
data near broadside in the EVC calibrated GSC, the GSC
steered response should still approximate the fixed-weight
beamformer steered response in the vicinity of the look di-
rection. Simulations demonstrate that this is the case.

4. SIMULATIONS

Figures 1 - 3 show how blocking filter derivative constraints
can be used to control the steered response of the GSC. The
array is linear with 11 sensors and 5 taps (sensor spacing is
equal to half-wavelength spacing for a 4 kHz signal). The
desired source is a 3 kHz signal located at array broadside,
with additive white Gaussian sensor noise (input SNR 20
dB). The array is steered from left endfire to right end-
fire, and the resulting output power versus steer direction
6 is plotted for the GSC with LMS adaptation (normal-
ized step size of .1). The three fixed-weight beamformers
considered are uniform shading, equiripple passband inside
90° & 21 and stopband outside 90° & 26, and fixed-weight
beamformer resulting from power response derivative con-
straints of {5]. Note that as higher order constraints are
applied, the steered response begins to approximate the
fixed-weight beamformer response.

Figure 4 illustrates combining spatial blocking filter deri-
vative constraints with CE calibration and with EVC cal-
ibration for a 16-channel, 10-tap array with simulated er-
rors in Table 1. The desired signal is a synthetic /i/ orig-
inating from broadside, with formant frequencies at 297,
2313, and 3016 Hz. The fixed-weight beamformer (dotted
line) is equiripple with passband inside 90° + 18 and stop-
band outside 90° & 23. The channel equalizer has 10 taps,
followed by orthogonality constraints BED, = 0. Deriva-
tive constraints are combined with EVC calibration by us-
ing calibration data from 87 to 93 degrees with 40 con-
straints. The calibration signal is an /i/ sound recorded by

a male speaker. Although significant signal cancellation oc-
curs for the CE calibrated GSC, the derivative constraints
still broaden the steered response.

5. SUMMARY

This paper has presented a new approach to derivative con-
straints for the GSC that leads to reduced sensitivity to di-
rection error. These new derivative constraints can be used
to control the GSC steered response in the vicinity of the
look direction, while still suppressing the sidelobes. The
amount of robustness to steering error can be controlled
via the shape of the fixed-weight beamformer response, as
well as by the order of spatial blocking filter derivative con-
straints. These derivative constraints can be combined in-
directly with the EVC calibrated GSC, thus providing effec-
tive steered response control even in the presence of array
€ITors.
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Uniform shading fixed—weight beamformer

steered response (dB)
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Figure 1: GSC steered response to narrowband signal with
derivative constraints, uniform shading fixed-weight beam-
former. Signal originates from array broadside (90°). The
dashed lines show the GSC steered response for increas-
ing orders of orthogonality derivative constraints (inner-
most dashed line is BED; = 0, outermost dashed line is
BH¥D; = 0). Response of GSC without derivative con-
straints (solid line) shown for comparison.

Equiripple fixed-weight beamtormer

stoered response (dB)

766 120 140 160 180

20 40 0
degrees from left endfire

Figure 2: GSC steered response to narrowband signal with
derivative constraints, equiripple shading. Same simula-
tion as above, except that the fixed-weight beamformer
has equiripple passband and stopband. The innermost
dashed line is B¥D; = 0 and the outermost dashed line
is B¥D, = 0.

] 20 20 =) 80 T60 120 140 160 180
degrees from left endfire

Figure 3: GSC steered response to narrowband signal with
derivative constraints, fixed-weight beamformer w; based
on power response derivative constraints. Same simula-
tion as above, except that wy (dotted line) is derived from
the power response 2nd order derivative constraints in [5].
Dash dot line shows the GSC with 2nd order derivative
constraints (both wy and blocking matrix based on [5]).
Dashed line shows the GSC response with derivative con-
straints B¥D; = 0 (w; same as for dash-dot line).

Equiripple fixed-weight beamiormer, typica! calibration signal
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Figure 4: Steered response (2313 hz component) of broad-
band signal for 16-channel, 10-tap array with simulated er-
rors, equirtpple fixed-weight beamformer. EVC calibrated
GSC (solid line) compared to CE calibrated GSC with
derivative constraints BZD, =0 (dash dot line) and EVC
calibrated GSC with spatial blocking filter null from 87 to
93 degrees (dashed line).

Type of Channel number

aror 12 03 4 s 7 8 9 W 0 L B ¥ L5 I
Channelgain | LIz 106 101 14 % 00 LS 1B 109 36 B L2 M 106 %
Chameldelay | oy 0 % 2 .o BoX% Ml o34 u M
in samples

Table 1: Array errors used for simulation.
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