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ABSTRACT

This paper summarizes the results of the
simulations and analysis of the learning behavior of a
simple two-layer perceptron for a nonlinear system
identification problem.  Although it is difficult to
generalize results for nonlinear systems, the analysis may
improve our understanding of neural network training.
Numerous sub-optimum stationary points occur for this
problem and cause difficulties in the correct identification
of the unknown system. The sub-optimum convergence
points occur in the saturation regions of the various
nonlinearities or for pathological cases. The size of the
region of suboptimal convergence points may be reduced
by increasing the dimensionality of the input data vector.
Also, the range for the rate parameter is computed and an
improvement to backpropagation is suggested.

1. INTRODUCTION

A series of papers [1-4] have studied the stochastic
learning behavior of single layer perceptrons based upon a
system identification model for the training data.
Transient and steady-state convergence behavior of
Rosenblatt's algorithm and the Backpropagation algorithm
were examined using a gaussian data model. These results
were extended to a partially adaptive two-layer network in
[5].

This paper studies the stationary points of a fully
adaptive two-layer perceptron for an appropriate nonlinear
system identification model. The two-layer perceptron
uses a modified form of the backpropagation (BP)
algorithm [6]. Since the error surface of the BP algorithm
is, in general, multimodal, the algorithm may have
several local minima. All local minima occur at the
stationary points of the algorithm (where the gradient of
the cost function is zero). Additionally, the matrix of the
derivatives (discriminant matrix) must be positive definite
at the local minima.

The two-layer percepwon attempts to identify the
parameters of the specific nonlinear system shown in
Figure 1. The nonlinear system has the same type of
structure as the specific two-layer perceptron but the
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parameters are fixed and not known by the perceptron.
The training sequence is generated by passing a Gaussian
data vector X(n) through two linear systems F, and F,.

The output of each linear system is d,(n) = FTX(n) and

(n) = FTX(n). These outputs are each passed through
2

clamping functions sgn(x). The outputs from these
functions are weighted by h, and h,, respectively, and
summed. The result is passed through a second function,
g,(x) that is only required to be nondecreasing. This
function divides N-space into four wedge-shaped regions,
each one assigned a value of g,(x). The adaptive portion
of Fig. 1 (the two-layer perceptron) has adjustable weights
Wl, Wz, q; and q,- Note that there is no amplitude
information in the training sequence. In practice, the BP
algorithm requires that W, and W, be followed by
differentiable nonlinearities. On the other hand, a signum
function is needed in the analysis to evaluate certain
integrals in closed form. The signum function is not
differentiable. However, by approximating the signum
with the error function, erf(x/d), (6 small), the formal
derivative of the signum function can be replaced by the
derivative of the error function. This technique yields a
modified BP algorithm which can be analyzed in closed
form, used in simulations and preserves the essential
features of BP.

2. SYSTEM IDENTIFICATION MODEL

Single and multilayer perceptrons are fundamentally
nonlinear systems. The vector inputs to each layer are
linearly combined, passed thru a nonlinear function
(threshold) and linearly combined in the next layer, etc.
The learning behavior of the neural network depends upon
the particular training rule used to train the network (adapt
the weights) and upon the training data. In the case of
perceptron learning, the perceptron can be viewed as a
nonlinear adaptive filter. Although the training rule is
usually deterministic, the training data are often best
modelled by random processes. Therefore, in order to study
the statistical behavior of the perceptron, it is necessary to
statistically define the training data. Because of the
difficulty of analyzing the behavior of nonlinear stochastic
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systems, the right choice of model for the training data is
critical. The model must reasonably represent real-world
data while retaining an inherent simplicity for the
analysis. This particular choice for the training data and
for the system for generating the desired sequence assures
that the joint statistics of d(n) and y(n) are uniquely
defined by X(n). The linear operations F,, F,, W, and
W, statistically defines d;, d,, z;, and z, as jointly
Gaussian zero mean variates. Thus, the subsequent
nonlinear operations can be handled within an underlying
Gaussian framework.

2.1. Gaussian Model for Training Data

The input vector XT(n) = [xl(n), Xy(n), ..., Xpn(D)]
consists of independent, identically distributed (i.i.d.)
Gaussian variates with zero means and common variance

oi . The covariance matrix for X(n) is modeled as
E[X(n) XT(n)]=o§I . For simplicity and without
loss of generality, set oxz = 1 (i.e. any scaling can be
absorbed in F, and F,). The perceptron is trained as
follows. A vector X(n) is randomly selected. Two
intermediary training signals with values 11 are generated
according to sgnd;(@)], i = 1, 2, where d(n) = F; X(a).

The final training sequence is given by

d(n) = g5 [hysgn(d, )+h,sgn(d,)] @
where
sgn(x)= 1, x>0
= sgn©0), x=0
=-], x<0 (2.2)

and where sgn(0) is arbitrary but is usually chosen to be
ZEro Or unity.

2.2. Perceptron Outputs

The perceptron input is also X(n). The first layer of
the perceptron is similar to the first layer of the nonlinear
system. Two intermediate signals with values lying in

the [-1,1] region are generated according to g, [W, X(@)}, i
=1,2. The input to the second-layer nonlinearity, z(n),
is given by

T T.

2(n) =q; g, W X@] +q, g W,X@)] 23)
Finally, the output of the two-layer neural net, y(n), is
given by

y(o) = gy{z(m)} . (24)
The error signal (which drives the learning algorithm) is
e(n) = d(n) - y(n) (2.5)
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For ease of performing certain expectations, it will be
assumed that g, (x) = sgn(x), but has the derivative that is

associated with g, (x) = erf(x/d), for some small value 5.

23. Modified

Algorithm
There are (2N + 2) adjustable weights in the

perceptron. If g,(x) is a nondecreasing function,

minimization of E{relative entropy} leads to the update
equations given in [6]:
T
g(n+ 1) =q;(m) + p, em) g;W; (m) X(@0)],
i=1,2.

Back-Propagation  Training

2.6)
W(n+l) = W;(n) +
uem) g;(m) g;{W, T X@}X@)
i=1,2 Q.7
where u q and p are the step-sizes. The first equation is
essentially the delta rule for the outer layer.

Egs. (2.6) and (2.7) are four coupled non-linear
stochastic difference equations which describe the behavior
of the back-propagation algorithm. The stationary points
of the algorithm are determined by applying the
orthogonality principle to each of the update terms. This

yields four coupled nonlinear deterministic equations for
4, G, Wy and W,

3. RESULTS

3.1. Sub-optimum Local Minima
The stationary points of (2.6) and (2.7) are defined
by the orthogonality principle,
E{-(n) g, W, () X@)]} =0
i=1,2
Ef4, em) g, {W, T X@} X@)} =0,
i=12 (3.2)
The discriminant matrix is constructed from the
derivatives of (3.1) and (3.2), and is positive definite at a
local minimum. The expectations in (3.1) and (3.2) are
evaluated in [5] and {7] using methods developed in [8].
The results are summarized here: Statiopary points can
occur under any of the following conditions;

a) If the outer layer weights are zero, (3.2) is solved
and only solutions to (3.1) are needed. These conditions
are guaranteed to produce a discriminant matrix with both
positive and negative eigenvalues.

b) If one of the outer layer weights is zero, the weight
vector associated with the other outer layer weight must
be an average of the directions of F;, F,. This also
guarantees that the discriminant matrix will have both
positive and negative eigenvalues. These conditions are
saddle points in the cost function.
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¢) If the inner layer weight vectors lie in the F,, F,-
plane and lie between F; and F,, then, with careful choice
of q; and q,, stationary points can be found. These
stationary points are local maxima in all directions
orthogonal to the F;, F,-plane. When the norms of W,
and W, are small, these stationary points are local
minima for directions in the F;, F,-plane. When the
norms of W, and W, are large, they become local
maxima in these directions. Our simulations and analysis
indicate that the norms of W; and W,, are monotonically
increasing with time. These stationary points eventually
become local maxima except for the pathological case
whenq; =q, and W, =W,.

d) The remaining stationary points display some
interesting properties and possibly have some important
implications for more complicated networks. These
stationary points have the following properties:

i) The vectors F{, Fy, Wy, and W, form a three
dimensional subspace of the input data space. If F; and
F, are unit vectors, and F = F;+F,, and W, F > 0 and
W2TF > 0, then the vectors Fl' F2, Wl, and Wz intersect

a half sphere.
ii) The intersection points form the vertices of a
convex quadralateral on the sphere with F, and F,

defining opposite vertices.
iii) These vectors form a stationary point for some
set of positive outer layer weights, If WITF <0or

W2TF < 0 hold, then the associated outer layer weight is

negative.

These stationary points can be the source of sub-
optimum local minima. Two cases were studied for the
output function g,(x). If g5(x) = ax+p, then the
discriminant matrix always has negative eigenvalues in
directions orthogonal to the three dimensional subspace.
Additionally, as the norms of W; and W, increase, the

directions in the subspace will have local maxima at the
stationary point. However, if g,(x) = tanh(ax+f), then
the discriminant matrix can have all positive eigenvalues
for stationary points. This occurs when = @Qy+qp) lies

well into the saturation region of g,(x) but = @Q;- qp) lies
in the linear region of g,(x). This can occur for q; = q
as small as q;=1.3811/a.. If * (q;+q,) lies in a somewhat

saturated region, the eigenvalues can be positive for
directions in the three dimensional subspace. In this case,
if the input data vector X has only three elements, adding
a fourth element would change a local minima to a saddle
point. This has implications for larger networks.
Kolmolgorov's mapping theorem [9] suggests that a two
layer perceptron network needs at least twice as many
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perceptrons in the input layer as there are elements in the
input data vector. The potential problem of getting stuck
at a suboptimal local minima can be minimized. The
input data vector can be augmented with enough random
inputs to make the number of elements in the input data
vector equal to twice the number of input perceptrons.
This augmentation has the added potential benefit of
supplying the data for a new measure of convergence.

3.2. Rate Parameter

The bounds on the outer layer rate parameter can be
computed for our system. The bounds are given by
O<p<Me/Aqid T A (O<h , <2) isthe
largest eigenvalue of the correlation matrix for the outer
layer inputs, sgn(WlTX) and sgn(WZTX). The value of
|Ae/Aq| is twice the average derivative of 2,(x) over the
update interval. |Ae/Aq| is bounded by g,'(x) at the
current point plus the maximum of g,'(x). This latter
term is bounded by twice the maximum of g,'(x). This
first bound provides a changing pq which yields better
performance than a fixed pg The inner layer will
converge with any rate parameter, but the best resuits are
obtained when the inner layer rate parameter is about the
same size as 0.
3.3. Improvement to BP
The simulations showed an interesting problem
that probably exists in all BP algorithms which was
greatly accentuated by the discontinous input nonlinearity
in our model. The output error is caused by errors in both
the inner and outer layer weights. When the parameters are
near convergence, the output error caused by the inner
layer weight vector misdirection does not decrease. This
output error only occurs less frequently. However, when
the error occurs, the BP algorithm uses the large error to
comrect both the inner layer weight vector direction (a
correct response) and the outer layer weights (an incorrect
response). The outer layer should not be corrected when
the inner layer is comrected. The inner layer derivative in
(2.7) can be viewed as a switch for turning on the inner
layer update. Good results have been observed when using
the inner layer derivative to turn off the outer layer update.

4. CONCLUSIONS

It is difficult to generalize the behavior of non-
linear systems using results based on simpler systems.
Hence, the results presented here may not generalize to
more complex systems. It is also doubtful that this
analysis can be generalized to significantly more complex
systems. However, the analysis provides a clear
understanding of a simple system in a field where most



insight has been developed by experience rather than
analysis.
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Figure 1. Nonlinear System Identification Using a Two-Layer Perceptron



