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ABSTRACT

Radar targets with moving components (engines, pro-
pellers, etc.) are well characterized in the frequency domain so
that the estimation of spectral parameters can be used in the
process of extracting features for their classification. With non-
imaging scanning radars the application of spectral parameter es-
timation for target classification is limited by a short time on tar-
get and other radar parameters. To alleviate these limitations, ar-
tificial neural networks have been used bringing with them the
long training time issue. This paper suggests a neural network
approach that capitalizes on the prescence of spectral compo-
nents and reduces the training time. This approach divides the
training of the multi layer perceptron (MLP) in two steps: pre-
training and final training. Pretraining guides the MLP to rec-
ognize the Fourier basis set of signals. The final training for tar-
get classification is then facilitated.

1. MOTIVATION & PREVIOUS WORK

This paper was motivated by the need to reduce spec-
tral estimation limitations in the implementation of aircraft rec-
ognition algorithms using non-imaging radar returned signals. It
has been observed that target signatures (modulations imposed
on the returned RF energy produced by the moving components
of the target) are well characterized in the frequency domain [1-
2]. As a result, attempts have been made at developing target
recognition algorithms to extract features in the frequency do-
main [3-4]. Since search and surveillance radar usually operate
with scanning antennas, a short time on target (TOT) is a serious
limitation for target recognition algorithms because the algo-
rithms are usually designed as add-on processors on existing ra-
dars.

In order to alleviate the TOT and other limitations, an
artificial neural networks (ANN) approach has been proposed
[5). This approach divides the training of the multi layer percep-
tron (MLP) in 2 steps: pretraining and final training. To imple-
ment pretraining, a basis set of simple signals is defined and an
ANN trained to recognize that set of signals. Final training then
consists of presenting data from the target set in question during
which the network’s training is facilitated by determining the
presence of each basis set element present in the target's signa-
ture. If the Fourier basis set is selected for pretraining (an obvi-
ous choice for the radar application as discussed above), then
pretraining becomes the problem of spectral estimation by ANNS.
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Previous work 1n spectral estimation by ANN trained
the network using the back propagation algorithm (BPA) [6].
There, the training data consisted of temporal signals for input
and their corresponding magnitude of the DFT as the desired
output.

2. APPROACH

The approach presented here (which is covered more
extensively in [S]) constructs a network with each output node
assigned to a frequency. If the input contains at least one of
those frequencies, then the magnitude at the corresponding out-
put node is required to be higher than that of the nodes whose
frequencies are not present in the input.

Consider the input-output relationship of a 1 sigmoidal
hidden layer network with a linear output layer with zero bias:

0= Y w,.fl ¥ w.x()+b,
1 kil .~ A J
J= L= : ()
Let each output node be assigned to a specific frequency, let the
frequencies be equally spaced and let only one frequency to be
present in the input signal. Assume the data is real thus we need
only frequencies in the range 0 < ® < x. Consider the entire fre-
quency range by indexing the frequencies and input respectively
_m=1)

, , m=1,...,K 2)
x,()=cosw, i, i=1,..,1, I22K. 3
and the output is required to be
@ a form=k @
0, (k)= ! where a = max O, (k). @)
b otherwise vk

Here we define /, J and K as the number of input, hidden and
output nodes respectively. Next, define other network vectors
and matrices
20 %, (1)

: , X, =| I |
0 2(K) Xp(1)

W”’=[wkj]g=ln.“.l5 w<l)=[wﬂ],»=|....; b<l>=[bj]j=| J
kel .

oV =

where off) isKbyl, x, is/byl, W® is Kby J, W is Jby I
and b is /by 1. Then Eq. I can be expressed as
o2 =W f(Whx +b?) 5)
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where f(x) with a matrix for operand implies that the function is
applied to all of the elements in the matrix. ’

Next, construct the matrices for K equations 5:
0(2) =[0§2) "'O(I?)]‘ X=[xl ...xK] (6)

where O® is K by K and X is / by K. In order to detect a si-
nusoid we want O to be such that O{P(k)> 0P (p) Vp#k.
That is, the diagonal element in each column is greater than any
other element in that column. We then say that O is diagonal-
dominant with respect to its columns. We denote such a matrix
as D. Then from Eq. 5 we have

D=W® f(WOX+b"). )

Next we solve Eq. 7 for the weights and biases given the input X.
To achieve this assume the following two conditions

K=Jand W®=1. (8)
Then
D=f(WOX+b") = WOX+b® = (D). ©)

Note that f"(x) is monotonic increasing since f(x) also is
monotonic increasing. Then we have that

f-(D)=D (10)

also is diagonal-dominant with respect to its columns. Now we
need to solve WX +b"¥ =D when X is known. We claim that
WO =XT and b =[0] (11)

is a solution since X”X is diagonal-dominant with respect to its
columns as required when Eqs. 10 and 11 are substituted in Eq.
9. To show that recall Eq. 6 and note that X"X is symmetric.
Symmetry and the condition

X, X, >X;°X, Vizk. (12)

imply that X”X is diagonal-dominant with respect to its columns

and rows. Therefore, it suffices to show that Eq. 12 is true.
1 i

Substitute Eq. 3 in Eq. 12 to obtain Y, cos’ 0,i > cosw,icosw,i

i=1 i=1
which can be shown to be true using trigonometric identities and
!
the fact that Zcosa)ki =0 if and only if the summation interval
i=1
covers a complete number of cycles.

Two key issues that need to be addressed when imple-
menting this approach are the facts that the development de-
scribed above considered only zero phase inputs and that only
one sinusoid per input sequence was allowed. Consider the in-
put's phase first.

To develop an implementation that deals with non zero
input phases we used 3 dimensional plots of input phase (9),
input frequency (w) and hidden node activity (a) or output (o)
for the ranges —n<¢<mand 0<w<=n and f(a)=o0. The
phase and frequency for which the node was matched to are
denoted by ¢, and w,, respectively and are annotated in the

m’

figure's caption. The number of input nodes used in the simula-
tion was [=225.

Figure | presents the activity of a hidden node with
¢,=0and 0, =4m. As expected, the maximum output value

occurs when the input is perfectly matched to the selected
0,, and ®,, as indicated by the hump in Figure la and by the

white section in the center of Figure 1b. Irrespective of ¢,,,

changes in ® have the desired effect of reducing the output of
the node to nearly zero. Changes in ¢ when o = w,, do not pro-

duce an output consistent with the desired results. Note that in
Figure 1 the output produced by a sinusoid input with w =w,,

and || 2% is less than the output produced by a sinusoid at any

® #,,. This situation is resolved by constructing a network

which adds the output from 3 nodes each matched to a different
O (i.e. 0,%7:,—33%) and with each node's input normalized and

biased by v =1—16— and -4 respectively. Such a network is shown

in Figure 2 with its output shown in Figure 3 for all ¢ and ®.

(a) (b)

Figure 1. Activity of a node. Node has been matched to ¢,, =0
and w, =+7.

The next issue to be addressed deals with the fact that
more than one sinusoid could be present in the input sequence.
The question to be answered is whether each individual output
node will produce a higher value when its corresponding fre-
quency is present regardless of whether some other frequencies
are also present. This follows directly by letting the input se-

X
quence be x=Y aX,, wherea, =0 or I, substituting into the
k=1

network's equation and noting that f(x) increases monotonically.

To apply this approach to the target classification
problem, a network is constructed to estimate the anticipated re-
quired number of frequencies using the construction of Figure 2.
Then a layer with L nodes (L=number of classes) is appended
with its weights, W™, randomly initialized. This produces a 2-
hidden layer network with the 2-nd hidden layer consisting of
linear nodes. This network is compressed into a 1-hidden layer
network with a new weight matrix W® and a new bias vector
b? given by

W2 = WOW?D and b = WOB? 4+ p?® (13)
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We call a network constructed in this fashion a pretrained net-
work which can then be used to be trained (final training) against
the L different classes using the BPA.

vx2(1)x(1)

vx () .
VX;E(T} .
vx (1)
vx (1)

x(/)

Figure 2. Network for sinusoid detection of a single frequency.

() (b)

Figure 3. Addition of output from 3 nodes with normalized and
biased activity. Each node has a different phase with values
0, 4mand —%m.

3. RESULTS

Two different sets of results are presented. First, the
spectrum estimation capabilities of the constructed network are
verified using synthetic data. Second, classification results for a
2-class classifier using actual radar data from two aircrafts are
presented for a baseline approach and the pretrained approach.

3.1.  Spectrum estimation verification
A network was constructed using the architecture of
Fig. 2 with a (40, 60, 20) topology (i.e. 40 input nodes, 60 hid-
den nodes and 20 output nodes). The output produced by the
signals:
x(é) = cos(6mif20) +

(14)
0.5cos(11mi/20+0.5m) +0.5cos(14mi/20 - 0.57)

x(i) = cos(6.25mi/20) + cos(1 1. 5mi/20) + cos(16.75mi/20) (15)

are shown in Figures 4-5 respectively.

[ 2 4 € L] 12 14 16 1 20

10
Node

Figure 5. Output for multiple sinusoids with in-bin frequencies.

3.2.  Target classification performance

In order to experimentally assess the effect of pretrain-
ing, two approaches were implemented: a baseline approach
(BA) and a pretrained approach (PA).

The BA consisted of a 1 hidden layer network, with
randomly initialized weights and trained using the BPA. Two
experimental variables were considered: the learning rate 1 and
the number of hidden nodes J. Three 1 levels were used: low
(m=10.0001), medium (n =0.001) and high (>n=0.01 and
N =0.02). These values were experimentally obtained to estab-
lish a range in m where the network went from incomplete
training (low 1) to oscillatory training (high n ). In this way,
the comparisons between the two approaches could be made
without any bias on the selection of 1. The selection of J was
initiated with the smallest nontrivial value (J=2) and allowed to
increase until memorization was evident in the performance.

Since the only difference between the PA and BA is the
method used to initialize the weights, the same experimental
variables described above for the BA apply to the PA.

Two sources of signals were used. The training signals
were obtained from a target signature generator which provided
actual radar signals while allowing engine speed and signal to
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noise ratio to be varied. The test signals were obtained from an
actual X-band, CW, FM tracking radar. All of the data was pre-
processed to remove the skinline and normalize it to the target's
radial velocity and range.

Tables 1 and 2 present the performance for the two ap-
proaches respectively using actual radar signals from two differ-
ent aircrafts. The first column identifies each run by a number.
The next two columns list the values for the experimental vari-
ables. The fourth column lists the best classification rate for the
10 attempts. The average column list the average classification
rate over the 10 attempts. The last column indicates how many
attempts in the run were successful. Success was defined as at-
taining an overall classification rate bigger than or equal to 80%
while maintaining the lowest classification rate (i.e. for either
class 1 or 2) at 75% or greater. For every combination of vari-
ables (each row), 10 different attempts were performed with each
attempt consisting of a different random weight initialization (all
weights for BA and the appended weights for PA). All attempts
were limited to 200 epochs.

Table 1. Baseline Approach Performance

Run | J n Best Average Success
Rate
1 2 0.0001 0.53 0.51 0(1)
2 4 0.0001 0.53 0.51 01)
3 6 0.0001 0.53 0.49 0(1)
4 2 0.001 0.54 0.52 0
5 4 0.001 0.58 0.53 0
6 6 0.001 0.56 0.52 0
7 2 0.01 0.54 0.52 0
8 4 0.01 0.57 0.53 0
9 6 0.01 0.56 0.52 0
10 2 0.02 0.54 0.52 0(2)
11 4 0.02 0.58 0.53 0
12 6 0.02 0.52 0.52 0
Table 2. Pretrained Approach Performance
Run | J n Best Average Success
Rate
1 6 0.0001 0.50 0.50 o)
2 9 0.0001 0.71 0.53 oD
3 6 0.001 0.90 0.76 5
4 9 0.001 0.72 0.61 0
5 6 0.01 0.89 0.66 0(2)
6 9 0.01 0.73 0.55 0(2)

Notes: (1) Training incomplete

(2) Oscillatory behavior
4. CONCLUSIONS

Figures 4 and 5 indicate that the pretraining by con-
struction of a sinusoid detector was successful at estimating the
spectrum. Figure 4 indicates that the network was capable of

handling non-sero phase inputs as required by the development.
An interesting point is that the approach development completely
ignored the input amplitude. Figure 4, however, indicates that
some of that information was extracted. Figure 5 stressed the fact
that the input signals do not always consist of sinusoids at the ex-
act frequencies being estimated.

Table 1 indicates that the BA did not performed well
the task of target classification. The final training performance
results listed in Table 2 for the PA indicate that the
PAgeneralization exceeded the performance of the BA. This is
particularly true for run 3 which produced the only successful
runs obtained for all the experiments. 5 of the 10 attempts in that
run were successful.

The PA approach has a number of advantages over the
BA. The PA training time was reduced in two ways. First it re-
duced the required number of epochs for the attempts to attain a
prespecified generalization classification rate. It was observed,
that 200 epochs sufficed to obtain successful attempts for PA but
not for BA. Second, due to the quantization of the size of the
hidden layer, the combinations required to search for the "best"
set of experimental variables was reduced. We observe that the
BA required 12 runs and the PA required 6 runs.

Another possible advantage which was not conclu-
sively accounted for is that the PA appears to require less training
data than the BA. For some problems (target classification in-
cluded) that advantage is of great importance.
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