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ABSTRACT

An application of the radial-basis function neural net-
work (RBF NN) on the angle-of-arrival (AOA) estima-
tion of a desired source in multipath environments is
investigated. In conjunction with a set of judiciously
constructed beamformers, the RBF NN are used to es-
timate the desired AOA within an angular sector of
interest (ASOI). With a pilot signal emitted from each
of the training AOA’s within the ASOI, the RBF NN
is trained with the higher-order statistics (HOS) esti-
mated from the received array data. In principle, the
RBF NN AOA estimator maps the complex HOS into
the desired angle response as an function approxima-
tor. By matching the HOS to the center vectors associ-
ated with the hidden nodes and linearly combining the
node values, an AOA estimate results. The efficacy of
the proposed AOA estimator is confirmed by computer
simulations.

1 INTRODUCTION

Source localization in a multipath scenario, such as
low-angle radar tracking or user position estimation
in urban mobile’ communications, has received much
attention recently [IJJ Conventional AOA estimation
methods, such as MUSIC and ML, are of limited use
in a practical multipath scenario due to the need of
calibrating and storing the modified array manifold,
as well as the heavy computational load incurred. The
RBF NN approach was suggested as a potential solu-
tion to this problem [2]. The RBF NN is a three-layer
network with a single hidden layer. Associated with
each hidden node is typically a Gaussian function char-
acterized by the center vectors and sensitivity factor.
For source localization, the output node performs a lin-
ear combination of the hidden node value which yields
an AQA estimate. With the center vectors judiciously
chosen from the training set, the network performs a
matching operation between the input data and a set
of prescribed AOA related patterns.
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In this paper, the RBF NN is employed in conjunc-
tion with a set of judiciously constructed beamform-
ers for localizing a source within a specified ASOI of
an array receiver. By using beamformers with suffi-
ciently low sidelobes, influence of out-of-sector inter-
fering sources can be alleviated. The formation of
the network is accomplished by first dividing the en-
tire ASOI into sub-cells, each representing a particu-
lar multipath signal group, then training the network
weights with a pilot source emitting signals at each
of the sub-cells. The optimum weights, determined as
the solution to a matching problem, are then used to
obtain the mapping from some statistics of the beam-
former output data into the source AOA estimate. The
training procedure is non-iterative in nature, except
that some efforts need be made in choosing the center
vectors and sensitivity factor. Both data level [2] and
correlation level [3] approaches were proposed for train-
ing the RBF NN in element space (ES). In this paper,
the HOS, or cumulant [4] based approach is proposed
for traininig the network in beamspace (BS). The moti-
vation behind using the HOS is its inherent capability
of suppressing Gaussian processes with unknown sta-
tistical properties. It is well known that for a Gaussian
process, all cumulants of order higher than two equal
zero. Therefore, a Gaussian noise source which con-
tributes to the estimation error of the network under
data or correlation level processing will be eliminated
under HOS level processing. As a final remark, pro-
cessing in BS domain greatly reduces the complexity
of the network, as compared to the ES approaches.

2 SIGNAL MODEL AND BS
PPOCESSING

Consider an M-element uniform linear array (ULA)
with a half-wavelength interelement spacing. A non-
Gaussian desired source and its associated multipaths
are assumed to be in the ASOI of the array. The addi-
tive noise present at each sensor is assumed to be Gaus-
sian with unknown covariance. At the kth sampling
instant, the array receives an M-dimensional data vec-
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tor:

x(k) = Y _ ara(6r)d(k) + n(k) (1)

=1

where 6; is the AOA of the lth path, and a(#;) and o
are the corresponding steering vector and complex at-
tenuation coefficients, respectively. d(t) is the desired
signal received at the reference element, and n(k) is the
noise vector. The composite steering vector [5] due to
the L paths is defined as

L :
a.(82) = Z aa(6;) (2)
=1

where 64 is the true AQA of the desired source. In some
extreme cases in which the direct path is completely
blocked, 84 does not belong to the set {4;}.

Our goal here is to estimate 63 based on gx(k)}
From the viewpoint of data classification, some feature
data associated with different source directions can be
used to train the RBF NN into an AOA estimator.
Training the RBF NN with the ES data directly is
not preferred since interference from outside the ASOI
may deteriorate the estimation accuracy. As a remedy,
processing in the BS domain is suggested. The N-
dimensional BS data is obtained from x(k) via a matrix
transformation:

xy(k) = WHx(k) = be(8a)d(k) + mp(k)  (3)

where W is the M x N beamforming matrix, b.(83) =
WHa,(8;) is the BS composite steering vector and
ny(k) = W¥Hn(k) is the BS noise vector. By ju-
diciously choosing the beamforming matrix, the un-
wanted interference can be suppressed. In addition,
the computational complexity can be significantly re-
duced if N < M. Depending on the environment con-
sidered, the beamformers can be chosen to meet spe-
cific requirements such as low sidelobes or directional
nulling. An example of N = 4 Chebyshev beamformers
pointed at —8°, —2.67°, 2.67°, 8° are shown in Figure
2.

3 FORMATION OF CUMULANTS

The HOS, or cumulants, are known to exhibit total
suppression of Gaussian processes. Therefore, an RBF
NN estimator based on cumulant data input will be
free of the influence of Gaussian noise and interference.
As suggested in [4], there are various types of cumulant
structure for sensor array data. For the aforementioned
BS data, a simple option for the N x N fourth-order
cumulant matrix is given by

zy,1(k)z; 1 (k)zs,1(k)
Cy = Cum
oy, N (k)zy N (k)zo, N (k)

[25,1(k), .., 2} w(E)]} (4)

where z3 (k) denotes the ith entry of x3(k). It can
be shown that C; retains the structure of the BS cor-
relation matrix [4]. In the following development, the
entries of C; are used as the input data to train the

network and obtain the AOA estimate.

4 CUMULANT-BASED RBF NN
AOA ESTIMATOR

The RBF NN consists of three layers: an input layer,
a hidden layer and an output layer, as depicted in Fig-
ure 1. The input layer simply distributes the input
data into the N, hidden nodes. Each hidden node is
characterized with a nonlinear, radially symmetric ba-
sis function. The choice of the basis function which we
use for the ith hidden node is the Gaussian function
performing the operation:

aye)=ep {-oglEL

a2

where y is an N2 x 1 data vector consisting of the en-
tries of Cp, ¢; is the N? x 1 center vector and o is
the sensitivity factor . If we take the feature cumu-
lant vector from a certain AOA as the center vector
ci, then ®;(-) is the measure of the proximity of the
source with the known AOA associated with ¢;. This
in fact translates the problem of AOA estimation into
one of data classification. By training the RBF NN
with feature data from different AOA cells, the weights
gw,-} linking the hidden layer and output node can be
etermined. These weights then combine the hidden
node values into an AOA estimate. There are vari-
ous approaches to determining the center vectors, o
and linking weights [6]. Solutions for these parameters
adopted in the simulation section are described in [7].
In summary, the network performs a mapping from
the estimated input cumulant vector y into an AOA
estimate through the linear combination:

N N
b4 = Z w; ®;(y, ¢;) (6)

5 COMPUTER SIMULATIONS

The ULA employed was a vertical array composed of
M = 8 elements. The multipath environment was as
depicted in Figure 1. Specifically, for each source, a di-
rect component and a symmetric specular component
along with four weak scattering components spread
within a sector of 6° were assumed. The specular path
signal had a phase shift of 90° with respect to the direct
path signal. The attenuation coeflicients of the scatter-
ing path signals were assumed complex Gaussian dis-
tributed. The relative power levels of the three types
of components were 1, 0.5 and 0.1, respectively. The
desired source was a BPSK source at #; = 5° above the
horizon. Spatially white Gaussian noise were also as-
sumed present at the elements. The N = 4 Chebyshev
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beamformers as shown in Figure 2 were used to collect
the BS data. The training AOA’s for the network were
{0°,1°,...,15°}, and N, = 16. The signal-to-noise ra-
tio (SNR) was defined to be the ratio of the direct
path power to the noise power. All cumulant and cor-
relation data were calculated based on 1000 snapshots
and all sample statistics in the following examples were
obtained from 50 independent trials of the AOA esti-
mator.

In the first set of simulations, the performance of the
correlation- and cumulant-based RBF NN estimator
was compared for the scenario involving a mainbeam
Gaussian interference from 10° with the same power
as the desired source. o was chosen to be 0.1. The re-
sulting sample root-mean-square errors (RMSE) versus
SNR are shown in Figure 3. The results indicate that
the Gaussian interference was successfully suppressed
by cumulant processing. In the second set of simula-
tions, we compared the proposed NN estimator with
the cumulant-based BS MUSIC estimator [4]. No in-
terference was involved in this case, and o = 0.03. The
RMSE versus SNR plotted in Figure 4 shows that the
MUSIC estimator did not work well due to the large
bias incurred with the multipaths, whereas the pro-
posed estimator improved as the SNR increased. In
the third set of simulations, the ES RBF NN estimator
(which used ES cumulant input data) was compared
with the proposed estimator. In this case, an inter-
ferer with the same power as the desired source arrived
from 40°, which was outside the mainbeam region. o
was again chosen to be 0.1. The resulting RMSE val-
ues shown in Figure 5 confirms the effectiveness of the
beamformers in suppressing sidelobe interference.

6 CONCLUSION

A beamspace cumulant-based RBF neural network ap-
proach to AOA estimation in a multipath environment
has been presented. The network collects a set of cu-
mulants formed with the outputs from a judiciously
constructed beamformer bank whose spatial response
encompasses a desired angular sector of interest. The
training data for deriving the optimum weights of the
network estimator are collected from sub-cells repre-
senting different AOA’s in the given angular sector.
The efficacy of the proposed scheme was confirmed by
computer simulations, which show the effectiveness of
beamspace transformation, high order statistics, and
neural processing, respectively.
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