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ABSTRACT

In this paper, a novel artificial neural network (ANN)
called the UNItary Decomposition ANN (UNIDANN), which
can perform the unitary (Schur) decomposition of the synap-
tic weight matrix, is presented. It is shown both analytically
and quantitively that if the synaptic weight matrix is pos-
itive definite and normal, the dynamic equation involved
will converge to a unitary matrix which can transform the
weight matrix into an upper triangular one via the Schur
decomposition. In particular, if the synaptic weight matrix
is also Hermitian (symmetric for real case), the UNIDANN
will perform the eigendecomposition. Compared with other
existing ANN’s, the proposed one possesses several attrac-
tive features such as more versatile in the sense that it is
capable of performing the Schur decomposition, low com-
putation time and no synchronization problem due to the
application of the structure of analog circuit, and faster con-
vergent speed. Some simulations with particular emphasis
at the MUSIC bearing estimation algorithm have been pro-
vided to justify the validity of the proposed ANN.

1. INTRODUCTION
The Direction of Arrival (DOA) problem, which occurs in

many other areas of signal processing such as sonar, radar,
and seismology etc., has been an active research area in
recent years. The traditional methods like linear prediction
(maximum entropy) and minimum variance methods can
not produce satisfactory performance when two sources are
closely located or when the signal-to-noise ratio (SNR) is
not high enough. To overcome this difficulty, many high-
resolution methods such as Pisarenko, MUSIC, ESPRIT,
and their variations [1] have been proposed. These high-
resolution methods are all based on the subspace concept
and require the eigenstructure decomposition (ED) of the
input correlation matrix. This ED procedure calls for a
lot of computations, thus hindering these subspace-based
methods from real-time applications.

Recently, there has been a resurgence of interest in the
investigation of the Artificial Neural Network (ANN). An
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ANN contains volumnious connected simple processing ele-
ments (neurons) and it can offer massively parallel comput-
ing capability. Hence, it becomes an attractive approach
to alleviate the high computations involved in the ED. The
utilization of neural networks for high-resolution bearing es-
timation was first considered by Rastogi et al [2], and later
improved by Jha et al [3] to achieve more likely the global
minima. Both methods utilize the Hopfield model by as-
sociating the minimization problem with the corresponding
Liapunov’s energy function. This type of ANNs, however,
suffers the drawbacks of requiring a large number of neurons
and is unable to achieve the global minima every time. An-
other approach is based on the hebbian rule. For example,
a digital neural network called APEX and its complex ex-
tension for extracting the principle components of the input
correlation matrix has been recently reported in [4] and [3],
respectively. On the other hand, Luo and Li [6] considered
an analog neural network by using the generalized hebbian
algorithm (GHA) addressed by Sanger [7].

In this paper, we extend the GHA and come up with a
novel neural network called UNItary Decomposition ANN.
(UNIDANN) which can perform the unitary (Schur) de-
composition [8] of the synaptic weight matrix. It is shown
both analytically and quantitively that if the synaptic weight
matrix is positive definite and normal, the dynamic equa-
tion involved will converge to a unitary matrix which can
transform the weight matrix into an upper triangular one
via the Schur decomposition. Moreover, the transformed

- triangular matrix has diagonal elements corresponding to

the eigenvalues of the synaptic weight matrix in a descend-
ing order. In particular, if the synaptic weight matrix is
also Hermitian (symmetric for real case), the UNIANN will
perform the ED and the associated principle components
will correspond to the front portion of the resulting unitary
matrix.

Compared with other existing ANNs, the UNIDANN
possesses the following attractive features: (1) It can per-
form the Schur decomposition so that it’s more versatile
than other existing ones like [2, 3, 4, 5, 6], which can per-
form the ED for symmetric positive definite matrix only, (2)
Compared with the discrete counterparts of [4, 5], it obeys
the continuous-time dynamics, thus possessing the merits
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of the analog circuits such as low computation time and
no synchronization problem, (3) It offers faster convergent
speed and more accurate final results than the analog ANN
recently reported in [6)].

2. THE MUSIC BEARING ESTIMATION
ALGORITHM

Consider a Uniform Linear Array (ULA) of M omnidirec-
tional sensors impinged by N(N < M) narrowband zero-
mean signals, sx(t), k =1,2,...,N. Assume that the sig-
nals (of the central frequency wq ) are stationary and far-field
to allow for a planar wavefront approximation. Then the
output of the sensor array can be described by

Y(t) = AS(t) + N(2), t=1,2,...,L (1)

where
Y(t) = [yl(t)v y2(t)7 R 71/M(t)]T, t= 1y27- . 7L
A(6) = |[a1,az,...,an],
a, = [, I MU T =12 N
Te = desClnak’k=1727"'yN
S(t) = [si(t),s2(t),...,sn@®]", t=1,2,...,L
N(t) = [nl(t)’nz(t)v" ‘1nM(t)]T7 t= 1a21-- ~7L

the superscript T denotes matrix transposition, matrix A
stands for the steering matrix, si(t) is the k** narrowband
signal arriving from angle 0y, d is the distance between two
adjacent sensors, and n;(¢) are the additive zero mean white
noise.

Assume that the signal sources are noncoherent, then
the correlation matrix of the input sequence becomes

R = E[YY"] = ADAY + 471, (2)
where the superscript ¥ denotes the Hermitian transposi-
tion,

2
[ =

D =

i=1,2,..., M,
diagonal matrix of Py, Ps,... Py

E|[|n:(¢)|*] = noise power,

and P;, i = 1,.--, N, denotes the power of the i** signal.
Let v; be the orthonormal eigenvector of R correspond-
ing to eigenvalue A; (A > ... 2 AN 2 ANy1 2 ... 2
Aum). Since eigenvectors {vN+1,VN42,...,Var} all corre-
spond to eigenvalue o° (noise component), the subspace
spanned by VN41,VN42,..., VM is interpreted as the noise
subspace by Schmidt [9], while the subspace spanned by
{v1,v2,...,vn} is interpreted as the signal subspace. The
MUSIC algorithm proposed by Schmidt is to use the or-
thogonality of these two subspaces to locate the arriving

angles 6;.
The pseudospectrum of MUSIC algorithm is defined as
1
P 9) = 3
musicl6) = T O ENERa(6)] 3)
where Ey = [VN41,..-,VM], and abs{-} stands for the

absolute value. In the MUSIC algorithm, when the ar-
riving angle § = 6;(i = 1,2,...,N), the denominator of

Prpusic(B) goes to zero since a(f;) lies in the signal sub-
space. As a result, the peak values of Pyusic(d) corre-
spond to the directions of signals [9]. Unfortunately, the
intensive computation load required for the MUSIC algo-
rithm in the ED of the correlation matrix precludes it from
real-time implementation. In the next section, we consider
a new neural structure which possesses massive computing
capability to overcome this difficulty.

3. UNITARY DECOMPOSITION ARTIFICIAL
NEURAL NETWORK

In this section, we consider the characteristics of the per-
formance of the proposed UNIDANN which is dictated by
the following continuous-time dynamic equation:

%V(t) = JWV(t) = V(t) x TRI{VI )WV (1)}]
x[DIAG{VF @)WV (@)}~ . (4)

where V() is an M x N matrix corresponding to the output
of the UNIDANN at time ¢, W is an M X M matrix standing
for the synaptic weight matrix, and c is a positive constant
related to the capacity and the resistance of the circuit.
TRI{.} sets all elements above (or below) the diagonal to
zero, while DIAG{-} sets elements in both areas to zero. A
neural structure for the UNIDANN is shown in Fig. 1.

Based on the dynamics of (4), we have the following
theorem:

Theorem: If the synaptic weight matrix W is positive
definite and normal, and N = M, the UNIDANN will ac-
complish the Schur decomposition. More specifically, V(¢)
will converge to a unitary matrix V fine with probability 1
so that S = Vfl,-“,WVf,',.al is upper triangular. Moreover,
the diagonal elements of S correspond to the eigenvalues of
W in a descending order.

Proof: Here we only consider the case for N =1 (the proof
for general N can be found it [10]) and, without loss of
generality, assume ¢ = 1. Since W is normal, there esisting
M linearly independent unit eigenvectors, vi,Vva, -+, vy
with corresponding eigenvalues Ay, Az,-- -, Ay, where A; >
Az > -+ > Ap which has been arranged in a descending

order. Multiplying both sides of (4) by vi yields
%(ka) =viV(VIWV)™t -] (5)

where we have used the fact that Vvg = Aevie, k=1, | M.
_viv T
Define 81 = #V (assume v V(0) # 0), then we have

%9"‘ = (A = A)(VIWV) 14, (6)
where we have used (5). Since W is positive definite and
A > 2> Au (e = ADVIWV) 0 < 0if k > L
Hence, ;; — 0ast — oo if k > 1. This implies that V final
lis in the direction of vi, i.e. Vjyina = c1vy. Substituting
this into (5) with k = 1 and using the fact that v; has unit

length yields

d 1 2
a—tcx =5 (1-c1) (M
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If we define a corresponding Lyapunov function U = (c} -
1)?, it can be readily verify that £U = 432-1)(1-¢}) <0.
Therefore, ¢; — 1 and Vjina — Zvi, thus completing
the proof. [ |

In most of the practical applications, W is not only
positive definite but also Hermitian (or symmetric if W is
real). In such cases, the above theorem can be simplified to
the following Corollary.

Corollary: When W is Hemitian positive definite, the out-
put of the UNIDANN will approach the principle N eigen-
vectors of W; that is,

VfinaI=[v17v27"'7vN]7 (8)

where v; is the eigenvector related to the eigenvalue A; of
W owith A; > -+ > Ay > - > An.

To apply the proposed UNIDANN to the high-resolution
bearing estimation algorithm like the MUSIC algorithm, we
need to estimate the input spatial correlation matrix R first
by

R= % ; Y(O)YH (1), (9)

where Y(t) is the input data received at time ¢ by the array
and £ is the number of snapshots. Then we set the intercon-
nection strength by using the computed correlation matrix
which is obviously Hermitian positive definite. Therefore,
the output of the UNIDANN will converge to the desired
results by applying the Corollary above. The overall steps
can be summarized in the following algorithm:

Algorithm: (UNIDANN for computing the signal sub-
space of the MUSIC algorithm)

1) Compute the input spatial correlation matrix accord-
ing to (9).

2) Set the synaptic weight matrix W equal to R.

3) Select an appropriate N and initialize V(0) to some
random matrix.

4) Update V(t) via the equation (4) until a stopping
criterion is satisfied. Note that the number of the
signals N can be obtained by checking the diagonal
elements of V;{ma,WVf,',..,,. The first N columns
of Vfinas will correspond to the eigenvectors of the
signal subspace.

4. SIMULATION RESULTS AND DISCUSSION
In this section, some simulations are performed to justify
the validity of the proposed UNIDANN.

Example 1
Consider an arbitrary positive definite matrix W as

1.2441 -0.0970 0.4037
W = 0.1782 1.8466 —0.1567
0.4197 —0.2576 1.7650

which has eigenvalues 2.0616, 1.7871, 1.0070. To obtain the
Schur decomposition of W, we applying the UNIDANN by
setting the synaptic weight matrix as W and choosing the

stopping criteria as ||V(n + 1) = V(n)|| < 107'° with || - ||
denoting the 2-norm. After it converges, we can get

-0.4524 0.1571 -0.8779
Viinat = 0.2489 0.9675 0.0449 {.
—0.8564 0.1982 0.4768

It can be readily verified that

2.0616 0.2191 —0.0232
V8 iaWVfina = 0 1.7871 —0.1940
0 0  1.0070

and vjrl’winulvfinal =1

where I is a 3 x 3 identity matrix. Therefore, it justifies
that the UNIDANN can indeed accomplish the Schur de-
composition.

Example 2

Consider a uniform linear array of 5 sensors and two
sources at 42°,46° with SNR=20 dB. The interelement sen-
sor spacing is set as %, and sensors are omnidirectional.
The pseudospectra of the MUSIC algorithm by using the
UNIDANN and the one addressed in [6] are shown in Figs.
2 and 3, respectively. A vivid description of the results
can also observed by the corresponding contour plots as
shown in Figs 4 and 5, respectively. We can observe that
the UNIDANN converges faster under the stopping crite-
ria ||[V(n + 1) — V(n)|| < 1073, This can be explained by
comparing the dynamic equations of the UNIDANN and
that of [6]. For the UNIDANN, there is an extra term
[DIAG{VY ()WV ()}]™', which stands for a normaliza-
tion term for each column of [WV (#) — V(t) TRI {(viw
V(t)}] in each iteration. Thus, it is not as sensitive as that
of [6] in choosing ¢. Therefore, for the UNIDANN, it is pos-
sible to use a larger ¢, which in turn offers faster convergent
speed.

5. CONCLUSION

In this paper, we advance a novel neural network, UNIDANN,
which can perform the unitary decomposition of the synap-
tic weight matrix. This new structure exhibits several ad-
vantageous features when compared with other existing ones.
Since many high-resolution bearing estimation methods are
based on the subspace concept and require the ED of the in-
put correlation matrix, the developed UNIDANN becomes
an attractive alternative to rendering real-time implemen-
tation of these methods.
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Figure 1: The neural structure of the UNIDANN.

The UNIDANN-MUSIC , SNR=20 dB
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Figure 2: The pseudospecira of the MUSIC algorithm by
using the UNIDANN.
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Figure 3: The pseudospectra of the MUSIC algorithm by

" using the one of [6].
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Figure 4: The corresponding contour plot by using the
UNIDANN in Example 2.
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Figure 5: The corresponding contour plot by using the al-
gorithm of [6] in Example 2.
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