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ABSTRACT

A new approach to the identification of a constant
amplitude signal with frequency/phase modulation is
investigated. We model the incoming signal phase as a
linear combination of a set of orthogonal vectors and use
the significant coefficients as features for identification.
Because of the data compression ability of orthogonal
transform, a few coefficients are sufficient for signal
representation, thereby reducing the processing time and
system complexity. The choices of transforms and
feature size are discussed. The performance of the new
identifier is studied through simulations.

L INTRODUCTION

This paper addresses the problem of identifying a
constant amplitude signal. Radio frequency signals
contain intentional frequency/phase modulation such as
linear FM, quadratic FM [1]. They may also have
unintentional frequency/phase modulation which solely
depends on the transmitter characteristics. It is possible
to exploit these modulations to identify a signal.

Correlation of the incoming instantaneous phase (IP)
or instantaneous frequency (IF) [2] sequence with those
in the references is a straightforward way for
identification. It is, however, computationally intensive
and time consuming when the data size is large. An
alternative is to classify from some distinct features. [3]
models the IP sequence by a polynomial and the features
are the polynomial coefficients. Computation of the
coefficients requires the inverse of an ill-conditioned
matrix, which may present numerical problems [3].
Polynomial phase transform [4] is a suboptimal approach
to find the coefficients by computing them sequentially
starting from the highest order one.

A polynomial model is suitable for a slow-varying
phase sequence. It needs a very high order when the
variation is rapid. Selection of the model order is not an
easy task without any a priori knowledge. We instead
model the phase sequence as a linear combination of
orthogonal vectors and use the orthogonal transform
coefficients as features for identification. The
computation is simple with fast algorithm and has no
numerical problems. Due to the data compression ability
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of orthogonal transform, classification only needs the first
few largest coefficients, thereby reducing the complexity
and permitting rapid identification.

The paper is organized as follows. Section II presents
the new orthogonal vector phase modelling method,
which also includes the selection of transform and feature
size. The orthogonal transform identifier is given in
Section III. Section IV compares the performance of the
proposed identifier with different transforms and the
optimum identifier.

II. MODELLING OF THE PHASE
The received signal in complex form is
z(k)=B ¢’*® + g(k) e8!
where B is the amplitude, 6(k) is the IP and (k) is a
complex white Gaussian noise of power ol At high

signal to noise ratio (SNR), the phase extracted from a
quadrature demodulator can be modelled as [5]

yk)=oky+nk) ., k=1,2,..,.N (2
where n(k) is a white Gaussian noise of power
62=02/2B% The new method models the phase as a

linear combination of orthogonal vectors so that (2)
becomes

y=0yey+n [€)
where y=[y(1),¥(2),...,¥M]", n=[n(1),nQ2),...,
nMW17, Qy is a transform with orthogonal column
vectors ¢; and ¢y is the transform coefficient vector.

Such representation is always possible since orthogonal
transformation is a one-to-one mapping. Premultiplying

both sides by QF forms

Ey=0Ty=cy+n=cy+QiM @
which can be computed by fast algorithms. n is the
coefficient noise which is Gaussian with power 2. We
assume the elements of &, are in descending order

(absolute value) for simplicity. Due to data compression
ability of an orthogonal transform, a subset of the
coefficients in é, is enough to represent the phase.
Clearly, a better transform requires a smaller set of
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coefficients. In the extreme case, we have only one
coefficient if the true phase is one of the orthogonal
vectors in Q.

Figure 1 compares the modelling ability of four
commonly used transforms [6], Haar Transform (HT),
Walsh-Hadamard Transform (WHT), Discrete Cosine
Transform (DCT), Slant Transform (ST) and Discrete
Fourier Transform (FFT), for a linear FM Chirp signal.
The modelling mean squared error (MSE) is defined as

1 4
MSE = 110-0y &I (3)
where el represents the second norm,
o=[0(1),0(2),...,0(M)]7 is a vector of the original
phase, Q,, is a matrix having the first M vectors of Qy

and &, is a vector of the first M elements of é,. The ST

is the best in this particular case and only four
coefficients are sufficient for a representation with 0.1%
error, DCT needs 8, WHT requires 13, HT takes 20
coefficients and FFT has the highest number of
coefficients, Figure 2 is another example for the
barker-13 Phase Code [7]. More coefficients are needed
with 0.1% error in this case and the performance of the
first four transforms are close.

The best transform for modelling depends on the
phase types we are dealing with. Although DCT is the
best in image processing under a first order Markov
model, it is not always the most suitable candidate for
signal identification. It will be the best for narrow-band
phase modulation such as sinusoidal. The WHT has
generally weaker data reduction capability, but requires
less computations. Because of their discrete nature,
WHT and HT appear to yield good representation for
wide-band, step changing phases. ST, which bears
similarity to both DCT and WHT in sequency but using
slanted linear waveforms, is a compromise of the two and
appears well-suited for applications involving a mix of
wide-band and narrow-band phases.

One needs a criteria to select the number of retaining
coefficients after a transform is chosen. A simple method
is to keep the coefficients with magnitudes larger than a
fixed fraction of the largest coefficient. Another may be
setting the size to be a fraction of the total number of
data points. The choice of the fractions may be crucial
for the performance. Another difficulty is they do not
take the SNR into account. We shall propose a method
for the feature size.

In the presence of noise, the MSE in (5) becomes

1
MSE =IVE[" QN cN_QMCM_QM"M "2]

=MSE_+MSE L ﬁ cz+£02 (6)
B s "“"Niya ¢ N "

The first term, MSE,, is the signal modelling MSE and
decreases with M. The second, MSE,, is the noise MSE
and increases with M. There is an optimum value for
which the total MSE is minimum. A typical plot of the
MSE for WHT modelling w(k)=3.2cos(0.89% )+ (k) is
in Figure 3, where the SNR is 4dB. The optimum M
value in this case is around 25. We shall use this
optimum M as the feature size.

Given a modelling phase, SNR and an orthogonal
transform, numerical procedure can find the optimum M
value. A simpler technique is to use a mathematical
model for MSE, and minimizes (6). Based on our study,

MSE, is well approximated by an exponential model,
MSE, =~A e *¥ Q)

where A and o are determined by fitting (7) to MSE,.
Substituting (7) into (6) and performing minimization

yields
1 aAN
M, = = In| o 8)

where | ()] denotes the integral part of (+). The
accuracy improves by fitting (7) with a smaller data set
around the computed optimum M, and then applies (8)
again [8]. Note that since A corresponds to phase power,
the optimum M is directly proportional to the phase SNR.
At high phase SNR, even the smaller coefficients contain
useful information and should therefore be retained for
identification. On the other hand, the insignificant
coefficients are highly corrupted by noise and have little
effect on identification when the phase SNR is low.
Hence, a smaller set of features can be used instead.

III. THE ORTHOGONAL TRANSFORM SIGNAL
IDENTIFIER

Several assumptions about the identifier are in order:
(A1) the noise in the signal environment is white, (A2)
the demodulation oscillator exactly matches the signal
carrier, so that there is no carrier frequency offset in the
unwrapped phase, (A3) the input signal is accurately
time-aligned and there is no sampling time mismatch
between the input signal and those in the library, and
(A4) noiseless signals are available for library generation.
This is not an unrealistic assumption as several records of
these signals could be appropriately processed to produce
a high SNR specimen.

Figure 4 is a block diagram of the orthogonal signal
identifier, The Pre-processor demodulates the
unidentified signal by quadrature demodulation and
produces the unwrapped phase. The identifier transforms
the phase, and extracts a set of features from the
transform domain representation. The extracted feature
set is then compared with those of the L signals in the
library for identification. The input is classified as the
signal which has the smallest matching error with the
input.
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To generate the library, the L previously recorded
signal phases are first tailored to a common size N. Each
of them are transformed and then sorted. The DC
component, which represents the phase offset, is
discarded. Along with the coefficients, each entry
contains a table of M,, for a set of SNR’s. Alternatively,
several values of { A, o} for different ranges of SNR can
be stored instead to reduce memory. M,, is computed
on-line from (8).

Let the index set of the first largest M, coefficients
of entry [ be I, Comparison of input to the /th entry
involves reconstructing the input phase from ¢;, i € I, and
computing the squared Euclidean distance (D) between
the reconstructed phase and the library entry. Let the
transform coefficient of the Ith entry be ¢,,. Due to the
orthogonal property of the transform, the distance D, can
be expressed as

N
A 2
D, =|| ) Coodi— ) Ceaq
k=1 kel
A \2 2
=2 (Ce—C )"+ ) Cri
kel kel

N
=3 (6,-2¢,)6,+ X ¢l 9)
kel k=1
Since the last term is the energy of the /th phase which
can be computed before hand, the distance calculation
requires only M, +1 additions and M,,, multiplications.

IV. SIMULATIONS

The library contained ten reference phase sequences.
The first five were sinusoids of same amplitude but
slightly different frequencies. They were given by
1.3cos(2n f:t), where f,=T79%Hz, f,=95kHz, f,=103kHz,

f1=191kHz and f;=254kHz.
quadratic phases with small differences in chirp rates p;,
where pe=3.2GHz/ sec, p;=3.19GHz/ sec,
s =638.293986101MHz/ sec, py=638.293986102MHz/ sec
and p,=638.293986104MH?z/ sec. The sampling

frequency was 64MHz, The confusion matrix at 10dB
SNR with WHT is shown in Table I. The sinusoidal
phases were correctly classified.  Although signals
(8)-(10) have very little difference in chirp rates, only
10% emor was observed. Figure 5 compares the
identifier performance when different transforms, HT,
WHT, DCT and ST, were used. Their performance were
close to the optimal identifier in which all coefficients
were used. HT had the largest complexity while ST had
the least, and DCT and WHT are in between. In
particular, ST took less than 30% of the coefficients to
achieve the near optimum result for SNR below 15dB.

The remaining were

To summarize, a signal identifier that uses orthogonal
transform coefficients as features for identification was
proposed and studied. Feature extraction requires modest
computation and has no numerical problems. The
performance is close to the optimum identifier, with a
complexity less than half of that of the optimum
identifier.
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Table 1 Confusion matrix, WHT and SNR=10dB
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