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ABSTRACT

This paper explores the use of an artificial neural network
to distinguish between echoes from a constellation of
acoustic reflectors representing a target and similar echoes
produced by other reflectors, e.g. reverberation. The
network was both trained and tested with simulated data.
A wide band linear frequency modulated pulse was used
in order to resolve the highlights of the target.

1. Introduction

A basic issue in the design of active sonar systems is the
high incidence of false alarms associated with a standard
energy detector, i.e. a matched filter or replica correlator.
Classification systems based on echo attributes have long
been recognized as important in the reduction of false
alarms. As a simple example, Doppler is a useful
parameter for discriminating between stationary clutter
and a moving target. Non-zero Doppler, as well as other
features of the returned echo, have long been used by
radar and sonar operators to distinguish target echoes
from clutter and reverberation.

Recently there has been a lot of interest in the
application of artificial neural networks to the problem of
echo classification. An early paper on this topic by
Gorman and Sejnowski [1] reported good success on a
sonar data classification problem — the data consisted of
echoes from linear frequency modulated (LFM) signal
pulses reflected from a metal cylinder and a cylindrically-
shaped rock placed on a sandy ocean floor. Input to the
neural network in [1] consisted of the powers in a set of
windows, temporally offset to follow the slope of the
LFM chirp, overlaid on the short term Fourier spectrum of
the return.

In the study reported here, samples of the correlation
envelope, i.e. the matched filter output, were used directly
as input to the neural network. Two applications of a
neural network were examined: (i) discrimination between
a target and clutter based on the correlation envelope seen
at a single sensor; and, (ii) discrimination between a target
and clutter based on the different correlation envelopes
seen at two sensors. Target and clutter returns were
simulated in both applications by means of randomized
distributions of point reflectors.

2. Target and Clutter Models

Figure 1 shows the basic elements of the two-
dimensional simulation used to generate echo data for the
investigation reported. The simulation involves a
projector (P), emitting an LFM pulse (duration 0.02
seconds, bandwidth 600 Hz), and a sensor (S). A target
was simulated by sixteen point reflectors with randomized
reflectivity placed at random along a line 50 meters in
length. Similarly, clutter was simulated by randomized
point reflectors within the directional responses of both
the projector and sensor. In the current study this was
approximated by placing clutter reflectors within a
rectangular region centered on the target location.

The received signal r(t) is given by the expression

r(t)=§51 B, a; s(t—t), ¢y

where a, is the reflectivity of the i™ point reflector,

s(t—t;)} is the delayed echo from the i™ point reflector,

and B; is a factor that includes projector and sensor

directional responses, a system gain factor, as well as
propagation path losses. Similar models have been used
by other workers [2] to investigate the ability of a neural
network to learn to classify different ocean-bottom types
by means of simulation studies. Their work, however,
focused on modeling of the reverberation from
distributions of point reflectors but did not consider the
modeling of target echoes.
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Figure 1. Target and clutter modeled by point reflectors.
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3. Echo Classification With Neural Networks

This study examines echo classification based on the
shape of the correlation envelope produced by echoes
from simulated targets and clutter distributions. In the
study an artificial neural network was used as a
convenient tool for evaluating how well echoes from
targets can be discriminated from similar echoes produced
by target-like distributions of clutter reflectors. Two
target-classification problems were explored: (i)
discrimination between clutter and target at several aspect
angles in a monostatic sonar, and (ii) discrimination
between a target and clutter in a multistatic sonar where
echoes are received at two different sensor locations.

3.1 Classification of Target vs. Clutter

A target was simulated as described in Section 2 by
means of sixteen point reflectors located along a line 50
meters long. Figure 2 shows the simulated target at four
aspect angles: 0 degrees, 30 degrees, 60 degrees, and 90
degrees relative to bow aspect. The corresponding
correlation envelopes that would result from a monostatic
active sonar with a 600 Hz bandwidth LFM pulse are also
shown with each target aspect. In Figure 2, as well as in
Figures 3, 5, and 6, the horizontal scale is in range
coordinates. Value of the correlation envelope is
represented vertically in all figures to the same scale. For
targets, the vertical and horizontal scales are the same.

Clutter was generated in a similar fashion with
twenty point reflectors, except that the reflectors were
located randomly within a rectangular area whose sides
were twenty percent larger than the linear dimension of
the target. One example of clutter and the resulting
correlation envelope of the echo is shown in Figure 3.
This clutter model is an oversimplification, since clutter
can result from reflections anywhere within the beams of
the transmitter and the receiver, a volume that may be
much larger than a target.

Training examples for a neural network were
generated by first forming 250 independent clutter
examples such as that shown in Figure 3. Each of these
were then combined with the four target correlation
envelopes shown in Figure 2 according to the formula:

x(n) = o target(n) + clutter(n), )

where x(n) is the n® input to the neural network,
target(n) and clutter(n) are samples of the respective target
and clutter correlation envelopes, with o being 1, 2, or 10.
The variable o is used to provide three different target-to-
clutter ratios. The training set also included 750 examples
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Figure 2. Simulated target at four aspect angles with
resulting correlation envelope (targets and correlation
envelopes are in range coordinates).

of clutter alone, which were generated by replicating the
250 clutter examples. This produced a total of 3750
examples in the training set. A testing set containing
3750 examples was also generated from an independent
set of 250 clutter realizations.

The neural network used in the study was a fully-
connected multilayer back propagation network with an
input layer of 80 nodes, a hidden layer of 15 nodes, and an
output layer of 5 nodes representing four target aspects
and a clutter-only category.
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Figure 3. A typical distribution of point reflectors and the
resultant correlation envelope.
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Figure 4. Neural network for echo classification (the
width and also the height of each rectangle indicates the
value of the output at a node).

The network was trained for a total of 20000
examples from the training set, with each one chosen
randomly from the 3750 available by a shuffle-and-deal
algorithm. Classification performance on the testing set is
indicated by the confusion matrix shown in Table 1. For
each category of echo, denoted by the column headings,
the numbers in the rows indicate the distribution of
network decisions.

Odeg |30deg | 60 deg | 90 deg | clutter
Odeg | 729 4 3 0 15
30deg | 3 713 5 0 42
60deg | O 5 731 0 9
90deg | 0 0 0 750 3
clutter | 18 28 11 0 681

Table 1. Confusion matrix summarizing classification
performance on the testing set.

It would appear from these results that
discrimination between clutter and target is achievable
under the restrictions used in the experiments; namely,
that the target model did not change between training and
testing of the classifier.

3.2, Discrimination of Target vs. Clutter from Echoes at
Two Sensor Locations

The correlation envelope of the returned echo from
an LFM pulse changes with viewing aspect. For small
differences in viewing aspect, say two degrees, the
differences in the correlation envelopes tend to be greater
for clutter than they are for the kind of linear target
considered here. This is illustrated in Figures 5 and 6.

The paired correlation envelope patterns,
corresponding to a two degrees change in aspect, were
used as inputs to a back propagation network as shown in
Figure 7. Targets were simulated by sixteen point
reflectors in a linear configuration as described in Section
2, while non-targets were simulated by twenty point
reflectors randomly placed in a square with sides equal in
length to that of the linear target. The extent of the clutter
distribution was made equal to the length of the target in
order to make the target versus clutter discrimination
problem more difficult. This time five realizations of
target and five realizations of clutter were generated. For
each of the five targets and non-targets, nine pairs of
inputs were generated with aspect angles in degrees as
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Figure 5. Linear collection of point reflectors and
correlation envelopes resulting from LFM pulse echoes at
two aspect angles differing by two degrees.

Figure 6. Random collection of point reflectors and
correlation envelopes resulting from LFM pulse echoes at
two aspect angles differing by two degrees.
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(b) Network state for a non-target input.

Figure 7. Neural network classifier (the input is a two-
dimensional array of values from the correlation
envelopes at two aspects differing by two degrees).

follows: (0, 2), (10, 12), ...., (80, 82). The network was
tested with independently generated test data containing
the same number of target and non-target examples,
except that in this case the first member of each aspect
pair was chosen from a uniform distribution in the range
zero to eighty degrees while the second was two degrees
larger. The classification performance that was achieved
is summarized by the receiver operating characteristic
(ROCQ) curves shown in Figure 8. -

4. Conclusions

The simulations shown here, while preliminary,

indicate the value of target modeling for target versus
clutter discrimination. In some cases it may be possible to
use point-reflector target models to train neural networks to
distinguish between target and non-target echoes from
single sensor measurements. It is also possible, by using
two or more sensors, to distinguish between targets and
clutter based on high resolution signals such as LFM.
Work with real data is necessary to further explore the
validity of these techniques.

1
Qutput 1—
0.8
0.6
PD

0.4
0.2

[}

o 0.2 0.4 0.6 9.8 1

(a) ROC diagram for output 1 of network.
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(b) ROC diagram for output 2 of network.

Figure 8. ROC curves for target/non-target classification
with the network shown in Figure 7 (output 1 is target
classification, output 2 is non-target classification).

References

1. R. P. Gorman and T. J. Sejnowski, “Learned
Classification of Sonar Targets Using a Massively Parallel
Network", IEEE Trans. ASSP, Vol. 36, No. 7, July 1988.

2. D. Alexandrou and D. Pantzartzis, "Seafloor
Classification with Neural Networks", IEEE Oceanic
Engineering Society Newsletter, Spring 1991, Reprinted
from Oceans '90 Proceedings, 1990.

3598



