THE USE OF A MULTILAYER PERCEPTRON FOR ADAPTIVE CORRELATION
PROCESSING IN A ACOUSTICALLY COMPLEX ENVIRONMENT

LT. Charles W. Victory, USNT and Richard Trueblood*

t. NCCOSC RDT&E Division, San Diego, CA.
t. Orincon corporation, San Diego, CA.

ABSTRACT

Robust detection and classification for active so-
nar processing in acoustically complex environ-
ments is a difficult and challenging problem.
Complex bathymetry and propagation effects
may cause multipath spreading of the transmit-
ted signal before it arrives back at the receiver.
Correlating with a replica of the transmitted sig-
nal may thus severely degrade the performance
of a system. This paper explores the use of a
multilayer perceptron to compensate for channel
and other medium effects in a acoustically com-
plex environment. It is shown that adaptation to
the environment in such scenarios can lead to
significant processing gain and that a multilayer
perceptron is capable of implementing this type
of processing.

1. INTRODUCTION

It is well known that optimum detection of
known signals in Gaussian white noise consists
of correlating with a filter matched to the signal
expected to arrive at the receiver [1-3]. An esti-
mate of this filter is obtained by convolving the
transmitted signal with an estimate of the im-
pulse response of the channel through which the
transmitted signal has travelled. If multipath
spreading and other medium effects are insignif-
icant, correlating with the transmitted signal may
produce satisfactory results. If the channel ef-
fects are significant, however, correlating with
the transmitted signal may lead to significantly
reduced detector performance. The purpose of
this paper is to demonstrate how much “process-
ing gain” can be achieved by adapting the pro-
cessing scheme to include the effects introduced
by the medium in a acoustically complex envi-
ronment. This will be shown through processing
of real data collected during a U.S. Navy sea
test. Additionally, the use of a multilayer percep-
tron is shown to be capable of incorporating
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such information. The rest of this paper is struc-
tured as follows: the processing approach is de-
scribed; results and analysis of processing the
data set are presented; and a summary and sug-
gestions for future work are presented.

2. PROCESSING APPROACH

In our approach, time series data is used to train
and test the multilayer perceptron. There are two mo-
tivations for working with time series data. First, it is
desired that the neural network perform coherent
processing. This is done in the first hidden layer
which consists of 20 sigmoidal units each with 1024
taps and 1 bias term. The number 1024 is chosen be-
cause it corresponds to the number of samples of the
transmitted signal. The second motivation in using
the time series is for classification purposes. Com-
mon classes of signals other than target that arrive at
the receiver are the signal that travels directly from
the transmitter to the receiver (without reflection
from the target) and reverberation, caused by back-
scattering of the transmitted waveform. In the power
spectrum, these signals lie in the same band as the
target signal and may be difficult to classify based on
power spectrum features alone. Class separation may
very well depend on phase information, hence the
reason for time series. The multilayer perceptron
has several characteristics which make it advan-
tageous for use as a classifier. First, Kolmogorov
proved that any arbitrary mapping, R™ — R",
is possible in a 3-layer (1-hidden layer) feedfor-
ward neural network given sufficient hidden ele-
ments [4]. Several investigators have shown that
a multilayer perceptron, when trained as a classi-
fier using backpropagation, approximates the
Bayes optimal discriminant function [5-7]. With
these considerations, we can see that a multilay-
er perceptron theoretically is capable of Bayes
optimal class separation regardless of the type of
underlying class distributions. How well it can
actually achieve this depends on network com-
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plexity, the amount of training data, and the de-
gree to which training data reflect true likelihood
distributions and a priori class probabilities. One
characteristic of real in-situ data is that it typically
has zero mean. The data analyzed here may or not be
Gaussian. The Bayes optimal decision surface even
for two Gaussian random variates, N(0,0,) and
N(O, 0‘2) is non-linear. Monte Carlo simulations us-
ing a multilayer perceptron have been performed
demonstrating its ability to approximate the non-lin-
‘ear decision surfaces required for this problem
[8].The complete net construct used here is a 2-hid-
den layer net as shown in figure 1 below. The first
and second hidden layers contain 20 and 10 sigmoi-
dal units respectively, with the output layer having N
linear elements, depending upon the total number of
output classes.
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Figure 1: Configuration of multilayer perceptron.
The rest of this paper will focus on comparing a
multilayer perceptron’s performance when trained
with in-situ data, with that of a correlator whose rep-
lica is the transmitted signal. The comparison will be
made at the detection level only to keep the analysis.
simple.

Before proceeding to the experimental results,
we digress for the moment to observe the results of
training a multilayer perceptron in the design of the
optimal linear solution for known signals embedded
in white Gaussian noise. Since there is a known ana-
lytical solution to this problem, this provides a good
check on the design of our network before proceed-
ing to more difficult problems. To show this, we have
assigned two output neurons to the net described
above; one a target neuron trained to recognize a
known deterministic sequence at unity power, and
the other an interference neuron trained with a sam-
ple of unity power white Gaussian noise. Measuring
the input-output relationship for a possibly non-lin-
ear system gives us an indication whether or not we
are operating in the linear region. In the case of linear
filters, the input-output relationship, i.e. impulse re-
sponse, is not a function of the input [9]. The input-
output relationship of non-linear filters however are a
function of the input and must be treated accordingly.
With this in mind, the dirac delta function, & (n) ,
was scaled at various amplitudes and processed

through the trained net with the results shown in fig-
ure 2 for the first 100 samples. Notice that the out-
puts scale linearly with the input from 0.16(n) to
108 (n) . From 208 (n) to 1008 (n) the changes
appear to be progressively more non-linear. With the
unity power impulse being in the linear interval and
the multilayer perceptron being trained with an ex-
emplar at unity power, this is a clear indication that
the net is operating in the linear region which is to be
expected for this problem. Figure 3a shows a lofar-
gram of the signal assigned as the target in this exam-
ple. It is a 25 Hz bandwidth hyperbolic frequency
modulated (hfm) slide of 10 second duration. Figure
3b shows the lofargram of the impulse response of
the multilayer perceptron at the target neuron prior to
training. This reflects the random weight initializa-
tion typically used in training a multilayer percep-
tron. Figure 3c shows the lofargram of the impulse
response of the multilayer perceptron at the target
neuron after training. The resulting output very much
resembles the hfm, the optimal linear solution in this
case.

3. EXPERIMENTAL RESULTS

In this section we first perform a bounding analy-
sis to theoretically quantify the possible gains when
medium effects are accounted for in this data set. We
then present the results of a performance comparison
by processing real data with a multilayer perceptron
trained with in-situ data and a correlator whose repli-
ca is the transmitted signal.

3.1. Bounding analysis

To theoretically demonstrate what gains are pos-
sible, we analyze a test site that has medium effects
typical for this data set. We wish to compute an esti-
mate of the transfer function between the echo re-
corded at the receiver and the transmitted signal (the
hfim described in section 2). Using the least squares
Wiener-Hopf equations [10], a 2 second estimate of
the impulse response is computed. It is shown in fig-
ure 4. Notice the peaks at approximately 0.2, 1.2, and
2.0 seconds. This multipath structure is characteristic
of dispersive mediums.To determine the theoretical
gain, we proceed as follows: convolve the hfm with
the estimate of the impulse response of the medium;
embed it in white Gaussian noise at an SNR of 0 dB;
correlate with the hfm (transmitted signal) and de-
note this R, fm > correlate with the medium effected
hfm and denote this R, i The squared correlator
outputs are shown in é"gure 5. We define the perfor-
mance gain as
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max (R )2
P = 101og10(-———-'—"fifﬂ—) (3.1)
g 2

max (R, )

Using this formulation, P, was computed to be ap-
proximately 10 dB for this example. We now show
the results of the comparison between the multilayer
perceptron trained with in-situ data and the hfm rep-
lica correlator.

3.2. Multilayer perceptron/replica correlator com-
parison

In order to test the generalization capability of
the multilayer perceptron, the data set is divided into
13 exclusive segments further subdivided into 8
training sites and 5 test sites. Training exemplars in-
clude samples of target echoes at these discrete train-
ing site locations and a sample of ocean ambient
noise for the interference neuron. Figure 6 shown be-
low depicts the geometry from which the exemplars
were chosen. The (*) indicates a training site; an (X)
indicates a test site. After processing data through the
multilayer perceptron, a simple voting procedure is
applied to pick the maximum value of the 8 output
target neurons. A 2.5-second CFAR split-window
normalizer is applied to both outputs to aid in false
alarm reduction. The performance metric for this
comparison is a Receiver Operating Characteristic
(ROC) curve. The average ROC curve for all test
sites is shown in figure 7. Notice at a P4 of 0.5, there
is almost 3 orders-of-magnitude difference in Py, be-
tween the multilayer perceptron and hfm replica cor-
relator ROC curves. At a Pg of 10e-03. the Py
differential is approximately 0.8.

k A x
Figure 6: Geometry of test denoting
training sites (*) and test sites (X).

4. SUMMARY/CONCLUSIONS

In this paper, we have shown that in-situ ad-
aptation in a acoustically complex environment
has the potential for significant processing gain
compared to traditional forms of matched filter
processing. A test involving modeling of the
transfer functions between a target echo and the
transmitted signal shows that substantial gains
can be achieved by correlating with a better esti-
mate of what is expected to arrive at the receiver.
This is confirmed in a test dividing the region
into training and test sites where the ROC curves
show significant improvement for the multilayer
perceptron. With multiple output capability, the

multilayer perceptron is an efficacious structure
for multiple hypothesis testing of target and in-
terference. Outputs may be expressed in the
form of estimates of Bayesian a posteriori prob-
abilities [7] and naturally form a basis for higher
level classification tasks. More work is neces-
sary in this area to compare the proposed neural
network classifier scheme with other known de-
tection/classification schemes.
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Figure 2: Impulse responses at various amplitudes.
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Figure 3: Lofargram for a) 25 Hz, 10 second hfm,
b) impulse response of multilayer perceptron target
neuron prior to training, ¢) impulse response of mul-
tilayer perceptron target neuron after training.

60 T T T T ( a.)

4001 +10.0 dB gain 1

% 02 04 08 08 1 2 1.4 16 18 2
time, (sec.)

Figure 5: Squared correlator outputs for
medium effected hfm embedded in white
Gaussian noise at SNR = 0 dB, a) Replica corr-
elator, b) medium effected signal as correlator.
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Figure 4: 2 second impulse response es-
timate between a typical echo and the trans-
mitted signal.
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Figure 7: Average ROC curves over entire region.
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