BEARING ESTIMATION WITH TIME-DELAY NEURAL NETWORKS

Brigitte Colnet and Jean-Claude Di Martino

CRIN-INRIA CNRS
Nancy. FRANCE

e-mail : beolnet@loria.fr , dimartin@loria.fr

ABSTRACT

In this paper we present a neuromimetic ap-
proach to bearing estimation issue. The proposed
method is based on time-delay neural networks.
This kind of network is well suited to take into ac-
count constraints encountered in signal processing:
it deals with the dynamic nature of signal and dis-
covers acoustic and temporal features. According
to the propagation model of plane waves, the net-
work has to relate the delays between sensors to
enable source localisation. The time-delay neural
network approach is encompassed in a successive-
refinement method. Thus, accuracy is increased
while the number of networks to look at the whole
horizon is reduced.

1. INTRODUCTION

We propose a neural network approach to the
bearing estimation issue. To detect and locate
far field sources, important information is pro-
vided by the time propagation delays between ar-
ray sensors. As shown Waibel in [1], time-delay
neural networks (TDNN) deal with dynamic na-
ture of signal and take into account temporal re-
lationships among acoustic events. Constraints
tied to the propagation model and encountered
in our application are the same as those encoun-
tered by authors in [1] and are well supported by
the TDNN approach. Indeed, we have to repre-
sent relationships between spacio-temporal events.
Moreover, these spacio-temporal relationships are
time-invariant.
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The localisation method presented here lies
on a successive-refinement process based on time-
delay neural networks. The performance of this
method on real signals confirms encouraging re-
sults obtained in simulation tests.

2. PROPAGATION MODEL

We assume that waves emitted by a far field source
are plane when they impinge a linear array of
equally spaced sensors. The knowledge of the ar-
ray geometry and of the propagation delays allows
us to locate the source. Indeed, let 8 be the di-
rection of arrival of signal, the delay between two
adjacent sensors is expressed by

dsinf
T ==

C

(1)

where d is the distance separating the two sensors
and c is the celerity in the propagation homoge-
neous medium. In equation (1) 7 does not depend
on time. This relation is time-invariant.

3. PRINCIPLE OF THE METHOD

We implement a two-level process to deal with the
source localisation issue. First, we take advan-
tage of time-delay neural network that has been
studied to phoneme recognition in [1]. Some con-
straints in speech recognition are almost the same
as those encountered in signal processing to bear-
ing estimation:

e neural network has to take into account the
dynamic nature of signal: data to process
represent the temporal evolution of the sig-
nal received on the array sensors,
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e it has to represent temporal relationships be-
tween acoustic events. In the case of plane
waves impinging on a linear array of equally
spaced sensors, the time when one wave im-
pinges on a given sensor has to be related to
the time it reaches other sensors,

e invariance under translation in time has to
be provided because spacio-temporal rela-
tionships are time-invariant (see equation
(1)): wave propagation delays do not change
over time because the array geometry is sup-
posed to be fixed while the emitting source
does not move.

We build a set of time-delay neural networks that
focus on some parts of the whole horizon (from
—90 to +90 degrees). A TDNN attached to an
angular sector indicates in which part of this an-
gular sector the source is located, if any.

Second, the neural networks are used in a
successive-refinement approach.

4. TDNN ARCHITECTURE

Consider a TDNN focused on angular sector [0, 6+
AG] divided in n equal parts of size % degrees. A
four-layer network is built:

4.1. Input layer

The input layer is supplied with the sampled sig-
nal received by the array sensors. The basic unit
of a TDNN is a delayed unit. Each sensor is asso-
ciated to one delayed unit. The number of delays
introduced for one unit is chosen to be equal or
greater to the maximum delay between the two
end sensors. Because coefficients are the samples
of signal on sensors at a given time, introducing
delays is like considering signal through a tempo-
ral observation window sliding over data. Input
data are normalised to lie in the interval [—1, +1].

4.2. Hidden layers

The first hidden layer has nhl units expanded out
temporally. The second hidden layer is made up
of nh2 delayed units. The number of delays for
the hidden units depends on the number of input

delays and on the size of the window frame sliding
on the previous layer.

4.3. Output layer

It is obtained by integrating over time the nh2
hidden units. The number of output units is equal
to nh2 and nh2 = n, the number of parts we divide
the angular sector focused by the TDNN.

4.4. Connections

The originality of TDNN lies in delayed units
and their feed-forward connections with shared
weights. A frame window scans the input layer.
Each unit in this window is connected to one frame
of nhl units in the first hidden layer. The frame
window size is chosen to integrate low level tempo-
ral events of signal arriving on sensors: it depends
on the propagation delay between two adjacent
sensors. In the second hidden layer, each frame
of nh2 units receives activation from a larger slid-
ing window on the first hidden layer (see figure 1).
This allows the network to process temporal events
on a larger scale. Additionally, since we need to
link temporal events whatever time they occur,
connection weights between units corresponding
to the same time shift are forced to have the same
value. They are updated with the average of all
corresponding time-delayed weight changes com-
puted using the standard back-propagation algo-
rithm [2].

4.5. Training process

The TDNN dedicated to angular sector [6, 6 + Af)]
is trained to activate the one of its » output units
that corresponds to the angular sector from which
signal comes. It is supplied only with signal com-
ing from [¢,6 + A#]. Training is performed with
simulated data. For sensor k at time ¢, the equa-
tion of signal is:

M
sk(t) = Z a;sin(27 fit) + nk(t) (2)

=1

where
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a;, f; are respectively the amplitude and the fre-
quency of the i** component of signal with

fi € [fmin’ fmax],

M is the number of components,
nk(t) is white noise.
Recognition process is achieved with real data.

Output layer

Second hidden layer

First hidden layer

Input layer

Sensors /

Frames: units delays

Figure 1: TDNN architecture for bearing estima-
tion

5. SUCCESSIVE-REFINEMENT
APPROACH

The originality of this work is the way neural net-
works are encompassed in a successive-refinement
approach (fig. 2). First, a TDNN I'y looks at the
whole horizon of 180 degrees. I'y has n; output
units that allow it to locate a source with a coarse
accuracy of % degrees. If a source is detected in
angular sector Sa;, ¢ ranging from 1 to n; (output
number 7 of T'; is activated), we use a more spe-
cialised network I'y;. The latter has been trained
to locate more accurately a source being in Sa;.
It is a mo-output-unit network. This reduces the
search space to an angular sector of nlli?n degrees.
Moreover, a third level allows us to obtain the de-
sired accuracy.

Experiments have shown that three refinement
levels are enough to obtain accuracy within the
limit of the 3-dB beamwidth [4]. The total number

of networks used is 1 + 7y 4+ n1 X n2. An interest-
ing feature is that all of these networks have the
same architecture; they only differ in the number

of output units.
H"" ’

-30 +30
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Figure 2: Refinement model

6. EXPERIMENTS AND RESULTS

6.1. Experiment framework

Array features

8 sensors far apart from 0.1 meter,
array length = 0.7 m,

sound celerity in air = 340 m/s,
sampling frequency = 20000 Hz,

Source features
The frequency of the emitting sources ranges from
500 to 2000 Hz.

6.2. Experiment results

In this experiment, we trained 13 neural networks
with simulated data according to equation (2).
The first network has n; = 3 output units. It sepa-
rates the whole horizon in three 60-degree angular
sectors. Then, in the second step of refinement
process, three networks, each one having ny = 3
output units, refine the search to 20-degree angu-
lar sectors. Nine other four-output networks allow
us to locate the emitting source with a 5-degree ac-
curacy. Then, we trained only 13 networks while
37 multi-layer perceptrons were used to get the
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Figure 3: Results obtained on real signal.
Direction of arrival of signal is -34 degrees. The
frequency emisston is 1000 Hz.

same accuracy in [3]. Results obtained on real data
with this method are compared to beamforming in
figure 3.

7. CONCLUSION

This method takes advantage of the TDNN archi-
tecture :

e A TDNN has the ability to handle the dy-
namic nature of signal. Signal parameters
such as frequency, phase and amplitude do
not matter. Thus, combinatorial explosion
due to large class parameters is avoided [5].

e Networks are supplied with raw temporal
data: there is no pre-processing step.

e They are robust to noise: good results are
obtained with noisy real data.

The successive-refinement approach allows us to
lower the number of networks to train without re-
ducing localisation accuracy. By the way, training
networks can run in parallel.

In further work we will study how the net-
work encodes the relationships it discovered be-
tween acoustic events. Another point is the adap-
tation of the architecture of TDNN. Indeed, it
seems promising to orientate the scanning window
according to the direction of arrival of signal.
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