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ABSTRACT

The detection of nonstationary random signals is an
important sonar problem which also has potential ap-
plications in diverse areas such as biomedical signal
processing and spread spectrum communications. The
primary problem with applying a powerful test like the
generalized likelihood ratio test (GLRT) is the com-
putational effort required to search for the maximum
likelihood model parameters for the observed signal.
The computation required is multiplied many times
over when a signal parameter is nonstationary. A com-
putationally efficient detector of nonstationary Gaus-
sian random signals based on the GLRT was presented
at ICASSP94 [1]. A slightly enhanced version of the
detector is described below, along with new simula-
tion results demonstrating that the detector performs
nearly optimally and is quite robust to signal model
inaccuracy.

1. DETECTOR DESCRIPTION

The detection algorithm given in [1, 2] will be referred
to as the General Viterbi implementation of the GLRT,
due to its use of the Viterbi algorithm for efficient pa-
rameter searching. The General Viterbi method is most
appropriate for the detection of signals which can be
modeled accurately with a small number of AR coeffi-
cients and have a single nonstationary parameter, such
as frequency. The method uses an AR(1) model and
therefore performs best when the signal has a single
spectral peak. It will be shown that the method is rel-
atively robust to deviations from this assumed model.
Figure 1 shows an example of a nonstationary AR(1)
signal superimposed on a colored noise background.
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Figure 1: The spectrogram is the magnitude of 256 point
FFTs with a rectangular window. The data blocks are
non-overlapping. The “harmonic noise” is actually mea-
sured sonar data.

The following mathematical model gives a frame-
work for describing the General Viterbi detection al-
gorithm. Let the received signal be the zero mean
complex Gaussian random vector z. Then let z(p) be
defined as a nonoverlapping rectangular windowed seg-
ment or "block” of z with )

z(p) = [z(pM),z(pM+1),...,z(pM+(M-1))I" (1)

where M is the number of samples per block, and P
is the number of blocks in the observation. Define
K. (p,q) = E[z(p)Z/(q)] to be the cross-covariance ma-
trix of any two blocks of z. There are two possible
hypotheses about z, Hy and H;:

Hy: K:(p,p) =K.(p,p) for all p
H,: K.(p,p) = Ks(p,p) + Ka(p,p) forall p. -

Only the diagonal blocks of the full observation covari-
ance matrix are used. This simplification will be ex-
plained shortly. If s is assumed to be a nonstationary
AR(1) process, K; can be written entirely in terms of
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the signal parameters, G, r,8, (signal gain, pole radius,
and pole angle, respectively) and the noise covariance
K,.

If an estimate of noise covariance is known, there
are no parameters to maximize for Hy, and the GLRT
for the entire observation may be computed. However,
it is preferable to process each block of z independently,
and the block version, or GBLRT detector, can be com-
puted as

P-1 H,
max > h(2(p)IGir,0(p) ~bo(z(p) < 0 (3)

8
G,r, =0

[

where I; is the log likelihood function under H;. This
alternative detector makes the implied assumption that
the off-diagonal covariance submatrices are zero, or
K.(p,q) = 0 when p # g, therefore the GBLRT only
approximates the GLRT.

The detector given in (3) is simple to compute ex-
cept for the multiparameter maximization. A few rea-
sonable simplifications, however, can make this maxi-
mization tractable. These simplifications are examined
in the next section. The model parameters need not
be continuous, but can be limited to a finite number
of discrete values defined in advance. This approach
can be applied to the model frequency 6(p), the model
bandwidth r, and the gain G. Discretizing the parame-
ters substantially reduces the size of the maximization
problem.

The search for the maximum likelihood path
through the discrete set of frequency values is equiv-
alent to a tree-searching problem, and the Viterbi al-
gorithm can be used to find the optimum solution [3].
The requirements of the Viterbi algorithm can be re-
duced if the search is restricted under the assumption
that the frequency is slowly varying. The computa-
tional requirements can be further reduced by use of
an efficient approximation to the likelihood function as
suggested in [4]. This approximation is referred to as
spectral diagonalization. The quadratic detector based
on the spectral diagonalization has been shown to per-
form nearly as well as the optimum detector [2].

Now consider restricting the signal to have a slowly-
varying frequency parameter. The detector in (3)
chooses (p) to maximize I, but in low SNR prob-
lems this can give a discontinuous signal frequency path
even when the actual path is smooth. To minimize er-
roneous path discontinuities it is useful to place a re-
striction on the rate of frequency change. The slowly-
varying assumption is taken to mean that the frequency
parameter can only vary up or down by one discrete
value, or bin, from one block to the next. This re-
duces the computational requirements of the Viterbi
algorithm to O(VP). Based on simulations, the one

bin restriction significantly improves the estimator’s
performance, even when there is a fairly rapid rate of
frequency change. The detector described in [2]

used the stack algorithm as an approximation to
the Viterbi algorithm, but further investigation showed
that the Viterbi algorithm performs substantially bet-
ter and becomes more computationally efficient when
using the single bin transition restriction.

In its final form, the detector statistic of the General
Viterbi method can be expressed as

P-1
AGBLRTsd = max Eo Z' (p)[D(Ko(p,p)) "
p:

-DKilp,p; G, 0(p) E(R)  (4)

where D() is defined as the operator which sets the
off-diagonal elements to zero and where

Z(p) = Wz(p) (%)

and _
Ki(p,p) = WKi(p,p)W' (6)

where W is the FFT matrix and ~ indicates a spectral
domain quantity. The name General Viterbi is inspired
by the fact that the Viterbi algorithm is used to maxi-
mize the sequence of 8(p) values, and G and r, although
fixed over the observation, are assumed unknown. The
acronym GBLRTsd is used to denote the Generalized
Block Likelihood Ratio Test (with) spectral diagonal-
ization. Diagonalization in the frequency domain, or
spectral diagonalization, is an effective approximation
because the FFT tends to diagonalize the covariance
matrix.

2. ANALYSIS

The distributions of AgprrTsd under hypotheses Hy
and H; are very difficult to obtain due to the maxi-
mization step. However, if the parameter values are
assumed known in advance, the maximization is elimi-
nated and the test becomes an approximation to the
LRT instead of the GLRT. The resulting detector
statistic, including the approximations but not the un-
known parameters, is given by

P-1
ApLrrsd = Y Z (p)[D(Ko(p,p)) ™

p=0
-D(K1(p,p)) ~'1E(p). (M
The distribution of A gL rTs4 is also difficult to obtainin

closed form, but its second order statistics can be used
to approximate it by the I distribution. The evaluation
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of the I approximation is given in [2]. The I" approxi-
mation technique may also be applied to approximate
the distribution of A g rT, the detector employing only
the block processing simplification (without spectral di-
agonalization). The distribution of ApLrr is given by

P-1

AsLrr = ) 2/ (p)K;' (p,p) — Ki ' (pP)lz(p) (8)

p=0

Figure 2 shows a comparison of the three detectors
based on the I" approximation of their distributions.
The figure makes it clear that the block processing
and spectral diagonalization simplifications have a very
small effect on the detector performance. Since this an-
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Figure 2: The I' approximation for the LRT, the BLRT,
and the BLRTsd detectors with SNR values of —25,-15,
and —11dB.

alytical method cannot be applied when the signal pa-
rameters are unknown, the generalized methods must
be evaluated using simulations.

3. DETECTOR PERFORMANCE

Figures 3 and 4 summarize the new results in perfor-
mance analysis for the General Viterbi detector. Fig-
ure 3 shows the receiver operating characteristic of two
detectors. The SUF (Stationary Unknown Frequency)
detector is an implementation of the GBLRT for a first-
order autoregressive AR(1) model. The SUF assumes
that the signal has a stationary, unknown frequency,
and the AR pole radius and signal power are known.
Because the SUF detector assumes that two of the sig-
nal parameters are known in advance, it can be used
as an upper-bound comparison standard for the Gen-
eral Viterbi detector which allows the frequency to be
nonstationary. The General Viterbi detector is the new
method, also based on the GBLRT, which assumes that

Comparison of SUF and General Viterbi for Pole Radius = 0.675
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Figure 3: The curves shown are for SNR values of
—25,—13, and —11dB. The SUF curve is for 1000 iterations
per hypothesis and the Viterbi curve is for 200 iterations per
hypothesis.

all the signal parameters are unknown. The General
Viterbi detector also includes several approximations
to increase computational efficiency. It must be com-
putationally efficient to estimate all the model param-
eters: the stationary signal power, the stationary pole
radius, and the nonstationary pole angle or frequency.
Figure 3 shows that the General Viterbi method per-
forms nearly as well as the SUF even though more in-
formation is available to the SUF detector, and the
General Viterbi detector must estimate the many new
parameters introduced by the nonstationary frequency
assumption.

The General Viterbi algorithm assumes an AR(1)
model for the signal, but its usefulness is not limited
to perfect AR(1) signals. It has been applied to sig-
nals with AR(2) synthetic signals (a second order pole
at one location), and to moving average (MA) signals
shaped by a frequency-shifted 6th-order lowpass FIR
filter. In each of these cases the signal meets the nec-
essary requirements of being wideband and carrying
most energy in a single spectral peak. Figure 4 shows
a comparison of the General Viterbi method based on
the AR(1) model with the SUF FIR detector. The
SUF FIR detector is simply the GBLRT for the MA(6)
signal where the only unknown parameter is the sta-
tionary frequency. The figure shows that the General
Viterbi method performs nearly optimally even though
it uses an AR(1) model instead of the correct MA(6)
model. Therefore, the General Viterbi method is useful
for a variety of signals which do not conform exactly to
the AR(1) signal model assumed.

Figure 5 shows the performance of the General
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Comparison of SUF FIR and General Viterbi
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Figure 4: Four SNR values are shown, —25, -15, —13, and

—11dB. Each curve was generated with 500 trials per hy-
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Viterbi method when the signal is an AR(2) signal in-
stead of the presumed AR(1) signal. The AR(2) sig-
nal is formed using a pole of multiplicity two so that
the spectrum will continue to have only a single peak,
although the peak will be sharper than before. The
General Viterbi method is compared with two other
detectors. The first is the Viterbi method assuming
known G and r values, and the second is the SUF de-
tector optimized for an AR(2) signal. Once again, the
SUF AR(2) detector assumes all signal parameters are
known, including the shape of the spectrum, but the
frequency is assumed unknown. Since the SUF assumes
the stationary signal is known to be stationary, while
the Viterbi methods assume the signal is not stationary
in frequency, the SUF detector has a distinct advan-
tage, and represents an upper bound for the General
Viterbi method.

4. CONCLUSIONS

The performance of the General Viterbi detector has
been shown to be similar to that of nearly optimal
methods, and computationally practical as well. The
excellent performance obtained vindicates the approx-
imations made to simplify the calculation of the like-
kihood function. The computational efficiency of the
algorithm is derived from the block processing approx-
imation, the spectral diagonalization approximation,
and the restricted version of the Viterbi maximization
algorithm. Each of these reductions in computation
have a small effect on the detector’s performance, so
that the resulting detector is comparable to the ideal
from which it is derived.

In addition to showing that the computationally ef-
ficient detector has good performance, the structure on
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Figure 5: The SUF AR(2) is the near-optimum detector
for a stationary AR(2) signal with unknown frequency. The
Viterbi detector assuming known G and r for the AR(1)
case is shown along with the stack detector making the
same assumptions. The general Viterbi detector estimates
the values of G and r which gives more freedom to com-
pensate for the model inaccuracy. The SNR values shown
are —25,—15, and —11dB. Each curve was simulated with
500 trials per hypothesis, except for the SUF AR(2), which
required 1000 trials.

which it is based is easily converted to use with spec-
tral models other than the AR(1) model assumed at
the beginning. The same basic structure is employed
in the implementation of the SUF FIR and SUF AR(2)
detectors for signals with non-AR(1) spectra. There-
fore, the General Viterbi detector may be useful as the
basis for computationally efficient detectors for nonsta-
tionary signals with a variety of spectral models.
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