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ABSTRACT

We present in this paper a high resolution method for
the joint estimation of Directions Of Arrival (DOA)
and Travel Time (TT). This aigerithm applies to ac-
tive antenna for wich the transmitted sigi:al of some
sources is known. We show how to take into account
the a priori information about signal in MUSIC.

The method is presented and a non asymptotic statis-
tical performance analysis using perturbation expan-
sious is applied. The major result is a formula for
mean-squared error of the DOA and TT estimations.
Simulation resalts verify the analytically predicted per-
“formance. o

1. INTRODUCTION

The problemn of localization of radiant sources in a
propagaiion medium arises in several applications such
as sonar, radar and seismology. In order to solve this
problem, several methods have been proposed. Each
of them depends on the a priori information available
about the received signal: kind of sources, noise, geo-
metry of the array, ete. ..

Since several years, high resolution methods have been
developed in order to separate spatially close sources.
They are based on an accurate modelization of the re-
ceived signals upon the array (plane waves, uncorre-
lated sources,...). All those methods have been con-
ceived for passive arrays. The signal is supposed tc be
random and stationary, the simplest case to be studied
being the narrow band case.

In order to take into account an a priori information
about signal (i.e. its spectral longth), narrow band
methods have been extended to wide-band signals. But,
for spatial analysis as well as for temporal analysis of
the signal, those wide-band methods used to consider
the signal to be random, and they do not use infor-
mations about spectral characteristics {modulus and
phase of the spectra) or temporal characteristics (wave-
form) of the signal.

More recently, methods have been proposed for cyclo-
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stationary signals (in narrow and wide band aunalysis).
They integrate an a priori information about the na-
ture of the signal and the performance in localization
is, thus, appreciably improved.

In many applications such as active sonar or ocean
acoustic tomography, the transmitted signal is known.
This information have been introduced in the analysis
of the signal received on a single sensor for the high
resolution estimation of travel time {1], but it is few
used in spatial anaiysis methods [2].

The method that is proposed here aims to use the a

-.priori.informatior.about the signal and to introduce it

into high resolution spatial or spatio-temporal analysis
methods.

2. SPATIOG-TEMPORAL ANALYSIS

2.1. Model and Notations

We consider an acoustic field composed of P sources
incident on an array of M sensors.
The signal received on the m'* sensor is modelized as :

P
Tm(t) = 2 ap.p(t — Tmp) + bin(t) {1
p=1

with :
¢ I,(t): temporal domain received signal at the
m** sensor.
e ¢p(t): signal transmitted by the p** source.

e a, : amplitude of the p** source.
® T p : delay between the p® source and the m*®

Sensor.
o b, (t) : additive noise received at the m*® scnsor.
In frequency domain, (1) is written as :

P

Tm(V) =D apep(v).e e £ by(v)  (2)
p=i
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zm(v), €p(v) and by (v) being, respectively, the Fourier
Transforms of (), ep(t) and by (t).
The travel time 7, , can be expressed as follows :

Tmp = Tp +1m(0p)

T, represents the delay between the p** source and the
reference sensor, t,,(f,) is the delay between the refe-
rence sensor and the m*® sensor. ¢m(0p) is function of
0, which is the direction of arrival of the wave upon
the array.

In (2), the term e,(v) is deterministic. It is composed
of a modulus and a phase expressing the a priori infor-
mation about the signal.

The a,’s are considered random and decorrelated. In
ocean acoustic tomography, for example, each source
corresponds to a path, e(t) is the signal transmitted
from the transmitter and a, corresponds to the com-
plex amplitude of each path.

2.2. Principle of the Algorithm

By separating the deterministic terms from the random
terms, expression (2) can be written in the following
. vector form :

with :
Xg = x*(n),x*(va),...,x(vp)]*

x(vi) = [21(%3), z2(05), - - ., e ()]

*

[ ]

e F: number of frequency bins of the signal.

¢ bg =b* (1), bt (r2),..., b (ve)}t

o b(i) = Bu(vs), ba(a), - - - bae(w)]*

e ¢ =[ay,as,...,ap]t

e H=[hy,hs,...,hp]

o hp = [e,(v1).e7 21 T0r | ep(vp).e”HTVPTMS]T

e * meaning transposed.

xg is a vector of dimension M.F obtained by concate-
nation of observation vectors at each frequency. bg
is a vector of dimension M.F obtained by concatena-
tion of noise vectors at each frequency. ¢ is a vector
of dimension P. H is a matrix of dimension (M.F, P).
H puts together the terms e~2*"m.» caracterizing the
transfer functions between the sources and the sensors,
and the term e,(v;) characterizing the signal transmit-
ted by the p** source.

Let us consider X, the covariance matrix of the received
data :

X = E(xg.xg)

* meaning transpose-conjugated.
If the sources and the noise are uncorrelated, we have :

X=HCH*"+B=Y-+B (4)
with :
e C = E(c.c*): Covariance matrix of the sources.

e Y = H.C.H* : Covariance matrix of the noiseless
observation.

¢ B = E(bg.bg): Covariance matrix of the noise.

The principle of the algorithm can be deduced easily
from the classical MUSIC algorithm. If the sources are
uncorrelated, C is diagonal and the rank of Y is P. If
the noise is spatially white and temporally white (fur-
ther hypothesis in comparison with the narrcw band
case), B is proportional to Identity. We can proceed to
a subspace decomposition and define a signal subspace

..spanned by the first P eigen vectors of X, and its com-

plementary, the orthogonal subspace spanned by the
M.F — P last eigea vectors of X. Thus, the algorithm
consists in maximizing the following function :

1
T (5)
Soizpg 12708, T).v:|?

26,T) =

with :
e a(#,T): wide-band steering vector.

e v;i: i*h eigen vector of X.

1

The steering vector a(8,T') is written as follows :

I- e(n1).e" T d+(v,,0)
2(0,7) = (6

I_ e(vp).e~ 2% rT dt(yp, )
with :

d(Vi, 9) = [1, e»—2lﬂ'll|‘t1'g(0), el e—2i1ru.-tx,M_1(0)]+

d(v4,0) is the classical steering vector used in narrow
band analysis. It contains the informations concerning
the phase shifts between sensors at a given frequency
and for a source of parameter 6.

a(8,T) is the concatenation of the vectors d(v;,8) wei-
ghted by the frequency characteristics of the signal.
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2.3. Simulation Results

In order to illustrate the characteristics of the algo-
rithm, we have done some numerical simulations. A
typical result is shown in Figure 1. The transmitted
signal is a BPSK signal whose time-bandwidth pro-
duct equals 15. The central frequency equals 180H z
and the main lobe is 120H 2 and 240H 2. The data are
generated in time. The sampling frequency is equal to
1920H z and the celerity of the medium is 1500m/s.
Three sensors are used and the spatial sampling corre-
sponds to one half wavelength of the lowest frequency.
The SNR is equal to 10dB. Two echoes are received on
the array whose DOAs and TTs are, respectively, §; =
0 deg, 82 = 7 deg, T} = 0 sample and T3 = 1 sample.

Figure 1 represents the logarithm of the function (5).
Both sources are clearly identified with their correct
DOA and TT. Such a result cannot be obtained by a
classical analysis (Beamforming-Matched filtering) due
to the time resolution of the signal (around 16 samples)
and the array geometry (only 3 sensors).
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Figure 1: Example of DOA and TT Estimation

This algorithm have many interesting points and a
complete description of its characteristics can be found

in [3].

3. STATISTICAL PERFORMANCES

The success of subspace-based DOA estimation is based
on its ability tc perform a complete separation of signal
and orthogonal subspaces. Observation noise is always
present in practice which results in the perturbation
of estimated subspaces when only finite measurements
are available or when the noise has unknown covariance

structure. This degrades the performance of DOA and
TT estimations by causing an incomplete separation of
the two subspaces.

3.1. Subspace Perturbation

Suppose that K snapshots are available. The K snap-
shots can be arranged as columzs in a data matrix as
follows :

Xg= [xg(1), %4(2), . - -, x4(K)]

which dimensions are (M.F, K). The noisy data matrix
can be written as :

Xg = Xg+ AXg

The subspace decomposition can be either performed
on the covariance matrix X by an eigenvalue decom-
position or on the data matrix Xg by a singular value
decomposition (SVD). The subspace decomposition us-
ing SVD on the direct data matrix Xg is as follows :

_ ._ As 0O Vs*
Xg=UAV _[USUO][ . OHVO‘]

where Us are the singular vectors associated with the
P non-zero singular values, while Ug are the singular
vectors associated with the zero singular values.

The subspace decomposition of noisy data by SVD ge-
nerates a noisy orthogonal subspace Ug which columns
are the estimated orthogonal subspace vectors asso-
ciated with smallest singular values of the noisy data
matrix Xg.

A noise matrix AXg induces perturbations in the esti-
mated signal and orthogonal subspaces as follows [4] :

AUg = Up - Up = ~UsAs™'V5*AXg Uy (7)

AUg = ﬁs —Ug = UOUO*AXgVSAS—l (8)

where AUyp is the perturbation in the estimated or-
thogonal subspace and AUy is the perturbation in the
estimated signal subspace.

3.2. Perturbation of DOA’s and TT’s estimates

In a noisy environment, the estimated DOA’s and TT’s
obtained by maximizing the function (5) are denoted
as perturbations from the true directions of arrival and
travel times as :

8, = 6, + AB,

T, = Tp + AT,
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where Af, and AT, are the perturbations of the p*
directions of arrival and travel times.

The subspace perturbations (7) and (8) cause per-
turbations in the estimated DOA’s and T'T’s. By ap-
proximating the derivative of the null-spectrum func-
tion by its first two terms in its Taylor series expansion
about the true angles and times of arrival, we derive
an analytical expression relating the perturbation in
the estimated orthogonal subspace to perturbations in
the directions and times of arrival. We get the following
expression for the perturbation in the p** DOA and TT
estiinates due to observation noise given by the matrix

AX.g N
RBrAX "
po, = TpAXg e, ©)
Tp
R[B:AX "
AT, = W AXg ozl (10)
Te
with f, = VsAglUja and
= 21UoUsar 1 e, _ youn
a1p R[a;UoUsa,] UoUga, ~ UoUga,
— a;UOUBaO * 11 *
a’}'UOUaaTa;UOUBa9 - *
= — UoU
T %[aEUoUBaT] R[az UoUgar]

~where-ag»= %(BP,TP) and- arr z-%(ep,Tp)

In the case of a zero-mean, spatially and temporaily
white noise with variance o2, the :nean-squared error
expression is :

2.2
llosp|l®e
2
2v;

113 ”2”0‘2?“20'2
272
In the case of one-path propagation, it has been shown

analytically that the variances of the estimates reach
the Cramer-Rao bounds.

E(AT,”) = (12)

3.3. Numerical Example

The configuration of the experiment is a four-element
uniform line array with one path at 0.0 rad and T =
6 ms. The emitted signal is composed of 3 frequen-
cies. Twenty snapshots of array data were taken for 1
hundred trials. Figure 2 shows statistical performance
with respect to different number of sensors.

In the figures displayed here, the lines are theoritical
predictions and discrete symbcls are simulation mea-
surements.
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- Figure 2: Root Mean-Squared Error of DOAs and TTs

versus number of sensors

4. CONCLUSION

In this paper, a high resoiution method for the joint
estimation of directions of arrival and travel times using
the a priori information of the transmitted signal has
been presented. Its statistical performance have been
derived and mean-squared error of the DOA and TT
estimations have been given.
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