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ABSTRACT

Here we analyze the tracking characteristics of a
new data-association/tracking algorithm proposed by
Streit and Luginbuhl [1], the Probabilistic Multi Hy-
pothesis Tracker (PMHT). The algorithm uses a re-
cursive method (known amongst statisticians as the
Ezpectation-Mazimization or EM method) to compute
in an optimal way the associations between measure-
ments and targets. Until now, no comparative per-
formance analysis has been done. In this paper, we
compare the performance of this new scheme to that of
a commonly used tracking algorithm, the Joint Proba-
bilistic Data Association Filter (JPDAF).

1. INTRODUCTION

In a multi-target scenario or in a heavy-clutter envi-
ronment, we are faced with multiple measurements and
multiple targets. Before any estimation can be done the
problem of deciding which measurements correspond to
which targets, and which to clutter — the data associa-
tion problem — must be dealt with. The PMHT accom-
plishes this in a novel way: its associations aré “soft”,
and each represents the posterior probability (given the
observations) that each measurement is associated with
each corresponding target.

In this paper we first describe the operation of the
PMHT, and the assumptions on which it is based. We
then discuss modifications to the basic PMHT (as de-
scribed in [1]) which are necessary that it work effec-
tively with clutter and missed detections (these and
other issues are explored in more detail in [2]). Fi-
nally we compare the PMHT to the JPDAF in a two-
target parallel trajectory scenario. It is shown that
fewer tracks are lost when the PMHT is used.
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2. OPERATION OF THE PMHT

2.1. The Algorithm

The scenario to which the PMHT is to be applied is
perhaps the purest target tracking scheme: there are
assumed to be M targets, the s** of which moves ac-
cording to the discrete-time linear model:

X,(t+1) = F,0)x,(t) + G,(t)u,(t) + v,(2)
yo(t) = Ho(t)x:(t) + ws(?) (1)

fort =1,2,...,T. Here, as usual, x,(t) represents the
trajectory of the s** model at time ¢, and y,(t) its cor-
responding observation; the model matrices are known,
and are assumed to represent an observable and con-
trollable system. The random sequences {v,(t), w,(t)}
are assumed white, zero-mean, Gaussian, and mutu-
ally independent, with E{v,(t)vI(¢)} = Q,(t) and
E{w,(t)wT(t)} = R,(t). The control sequences {u,(t)}
are known, and since these contribute in the form of
“ownship” platform motion in a straightforward but
notationally-inconvenient way, we shall take them as
zero with no loss of generality.

Now, naturally in a multi-target tracking scenario
the thorniest problem is of data-association; that is,
how to determine which measurements come from which
targets. For each t we define {k,(t),z.(¢)} %, such that

() = Yiol®) (2)
meaning that the r** measurement at time ¢ comes
from model £, () — and, of course, k. (¢) is unknown. As
an aside, please note that we have denoted the number
of observations (detections) at time ¢ as n, - which is
not necessarily identical to M, the number of targets
- but that we have at least for now insisted that each
measurement comes from some target. We will discuss
false-alarms shortly.

What remains is to provide a probabilistic structure
for the measurement/target associations: our assump-
tion is that

Prk.(t)=s) = =, (3)
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and that all are independent. This is to be contrasted
with the assumption made by the JPDAF (and MHT)

(3] that

{k- () = 5} = {ks(t) # 5} (4)
for r # s, which introduces dependence. The indepen-
dence of (3) is necessary that the PMHT have an ap-
pealing computational structure; however, it must be
admitted that (4) is of greater practical significance.
As such, in the simulations that follow, assumption (4)
will be employed — we will show that the PMHT per-
forms well regardless of this.

The operation of the PMHT is as follows:

1. Determine initial values for the trajectory vari-
ables x1(t) for all targets s = 1,2,..., M and all
times t = 1,2,...,7. Set the EM iteration index
n=1.

2. Calculate the posterior association probabilities
w,(t) for all targets I = 1,2,..., M, and for

all times t = 1,2,...,T, and measurements r =
1,2,...,n4, according to:
wi,(t) = (5)

mN {z.(t); Hi(H)x] (t), Ri(t)}
2;17‘4:1 [”pN {z,(t);Hp(t)xg(t), Rp(t)}]

where N refers to a multivariate Gaussian pdf
with the specified mean and covariance.

3. Calculate synthetic measurements Z, () and their
associated (synthetic) measurement covariances
R,(t) for all targets s = 1,2,..., M and times
t=1,2,...,T, according to

5 e Wi (t)z (1)

S S TEXC)

5 - R, (%)

O = e ©
respectively. |

4. For each target s = 1,2,..., M, use a Kalman
smoothing algorithm to obtain the updated esti-
mated trajectory x?*1(t), according to the model
of (1), but with the difference that the synthetic
measurements and covariances z,(t) and R,(t)
are used in place of y,(t) (which naturally is not
known) and R,(t).

5. Increment n = n+1, and return to step 2 for the
next EM iteration, unless a stopping criterion is
reached.

Experience shows that reasonably accurate solutions
are available after 3-5 iterations, and that there is sel-
dom any change at all after 10-20 iterations (this, of
course, is problem-dependent).
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Figure 1: The situation in a typical run of the PMHT,
after the sixth batch of length 5. The clutter density is
A = 1074, and the probability of detection is P; = 0.7.
A detection is denoted by a o, a false-alarm (only one
snapshot is shown of these) by a +, and each current
probabilistic centroid (i.e. Z) by a *. The circles sur-
rounding the targets represent one-o regions for homo-
thetic sub-modes corresponding to k1 = 1, k3 = 4, and
k3 = 16. False-alarms too distant from the targets to
be of any interest are suppressed.

2.2. False Alarms

The PMHT as written makes no provision for false de-
tections. That is, for each detection the posterior prob-
ability (w) of it being associated with each target is
generated, and these w’s must sum to unity. With no
modification the result is, usually, a lost track.

Some provision must therefore be made. The most
straightforward approach is to allow for an (M + 1)*
“dummy” target, from which all false detections are
assumed to arise. The dynamics of this target are not
important, and it can be assumed stationary; what is
important is that it have a sufficiently large measure-
ment covariance so as to have its associated measure-
ments appear approximately uniformly in space over
the region of interest.

2.3. Homothetic Gating

In the PMHT the concept of a gate is murky, and de-
serves some explanation. Equations (6) describe the
synthetic measurements and covariances to be applied
to a Kalman smoother, and it is easy to see that the
former is a posterior-probabilistic centroid of measure-
ments, which makes intuitive sense. The latter indi-
cates the weighting factor for this synthetic measure-

3572



ment: if 3 ¢, w,-(t) is small, this must have arisen
because no measurements at time ¢ seem likely to have
come from target s, and hence the synthetic measure-
ment covariance R (t) supplied to the Kalman smoother
is large, reflecting the PMHT’s lack of confidence in
Zs ().

While this is sensible and intuitive, it is not a gate.
As with the JPDAF and MHT algorithms, a gate is
not necessary in the PMHT, but there is still gating
action as implied by the posterior association probabil-
ities (the w’s for the PMHT). From equation (5) it is
clear that these are determined by the modeled mea-
surement covariances (the R’s) and not the synthetic
ones (not the R’s) — and this is the problem: the R’s
are fixed. Without dynamically-sized gating (which the
JPDAF and MHT employ) targets are easily lost, and
performance is poor.

Our solution is to change the model from that of
equation (1) to

x(t+1) = F,()x:(t) + G,(t)u,(t) + v,(t)
Yop(t) = H.()x,(t) + Wip(t) (7)
where p = 1,2,...,P. All quantities behave as be-

fore; the difference is that for each target s there are
P submodels, the p** of which has measurement noise
{wsp(t)} and for which E{w,,(t)wZ,(t)} = k.,pR,(2).
Each submodel of the same s-index has the same tra-
jectory {x,(¢)}, but the measurements obtained are dif-
ferent, and have multiplicatively-different covariances.
Intuitively each target carries along with it P concen-
tric and fixed gates, presumably some small (small «,,)
and some large (large x,,). The PMHT “prefers” to
find its measurements, if possible, within the smallest
gate; but if no such detection is available it turns its
attention successively to its larger gates.

This “homothetic” (meaning that groups of P tar-
gets which have the same trajectory) PMHT operates
exactly as described before, except that we have

E;}:—l Z:‘t—l w?P3+p)r(t)zr(t)/n(Pa-I-p)r
Ep 1 Z =1 w(P3+p)r (t)/’f(Ps+p)r

5 t

R,(t) = R.() (8)

Zp—l Zr 1 w(Ps+p)r(t)/K'(Ps+p)r

instead of (6). As promised, a target’s homothetic
modes with larger covariance multipliers (x’s) produce
lower gain responses. Suggested prior probabilities (i.e.
’s) are:

5
w
—_

o~
~—

T
— s=1,2,...,PM
PET:l"‘
T, =
11— ML s=PM+1
ZT:I“'
(9)

3. RESULTS

Our model is two-dimensional and kinematic, with po-
sition measurements, and contains two targets; that is,
with reference to equation (1) we have

1 At 0 0
_Jo 1 0 o0
B0 = Y0 0 1 At
0 0 0 1
1
wo = (150 0)
At3/3 At2j2 0 0
_ At2/2 At 0 0 1
Q.(t) = 0 0 A/3 At?/2 (100
. 0 0 Af?/2 At
(25 0 0 O
0 25 0 0
R(t) = 4 9 0 25 0 (10)
0 0 0 25

\
fors=1,2and allt =1,2,...,T, with T = 100 snap-
shots of measurements. The known input u,(t) is taken
as zero. The sampling interval is At = 3 seconds.

In all cases the trajectories used are constant ve-
locity and parallel. (These are the true trajectories;
for tracking a positive-definite Q is necessary, and the
small one of (10) is not inconsistent with a constant-
velocity target.) The probability of detection Py is as-
sumed to be the same for both targets, but its value will
depend on the simulation. False alarms are Poisson-
distributed, with spatial density A whose value will
depend on the simulation. We specify that each tar-
get can produce no more than one detection at any
given time; that is, the model used is that of (4) which
we have called “realistic”, and is that upon which the
MHT and JPDAF are based, rather than that giving
rise to the PMHT. For both schemes two-point initial-
ization is used.

A typical snapshot and its associated tracking be-
havior are shown in figure 1. At the current snapshot
the detection from the lower target appears to have
been missed — the synthetic measurement z is found
near some false alarms.

In figure 2 we show the result of varying the x’s. It
appears that k,, = {1,4,16} is a reasonable choice, at
least in the cases we have examined. We suspect that
such a choice is in general reasonable; however, this
may be a matter of tuning to a particular application.

We compare the PMHT to the JPDAF via 100
Monte Carlo runs in our constant-velocity parallel-track
situation. The main metric is percentage of tracks lost,
and the results are given in tables 1 and 2. We addi-
tionally show in figure 3 the mean square estimation
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Figure 2: The percentage of lost tracks as a function
of the k’s. These specify the ratios of the variances
of the homothetic sub-models. Many such simulations
have been run, and these results are typical: it appears
to be a good choice to use k; = 4, and a considerably
larger k3 whose exact value is not important.

error (MSE) from those tracks which are not lost. Our

conclusion is that for moderate P; and A, the improve-
ment of the PMHT over the JPDAF is impressive.

[ > [0 f[107*[10°[107%% [ 10" |
Pi=04] 92 [ 73 | 68 | 28 | 18
Pi=05 74 | 50 | 21 | 16 | 11
Pi=06] 48 | 28 9 9 )
Pi=07] 34 | 11 6 8 5
P, =038 | 17 5 4 0 1
Pi=09 | 12 0 1 0 1
Pr=10] 3 0 0 0 0

Table 1: The percentage of lost tracks for two parallel
and constant-velocity target models, from simulation,
PMHT algorithm. The average number of false-alarms
per square meter is A.

4. SUMMARY

The purpose of this paper has been two-fold: to intro-
duce some needed modifications to the original PMHT
design, and to compare the PMHT to the JPDAF.
With respect to the first, we have explained the use of a
high measurement variance “dummy” target to absorb
false alarms; and we have elaborated the “homothetic”
multi-model concept as a means to obtain variable gat-
ing behavior. As for the second, we have shown via sim-
ulation that in both terms of lost tracks and of MSE,

I 2 J10*]107* 710757107557 10°%]
P;=047 98 82 75 64 74
P;=05] 87 73 55 59 60
P;=061 69 52 36 56 39
Py =071 57 39 33 25 43
P;=08] 37 23 30 26 18
P;=09] 25 19 17 16 21
P;=101] 0 0 0 6 5

Table 2: The percentage of lost tracks for two parallel
and constant-velocity target models, from simulation,
JPDAF algorithm. The average number of false-alarms
per square meter is A.
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Figure 3: The mean-square estimation error (MSE)
for those tracks which in tables 1 and 2 are not lost.
“High” and “low” clutter correspond to the left- and
right-most columns in those tables, respectively.

the PMHT can offer a satisfying improvement over the
JPDAF in a practical two-target scenario.
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