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ABSTRACT

The problem is the detection and the estimation of
abrupt changes in a chirp signal. In this case, an ex-
act Generalized Likelihood Ratio (GLR) test cannot
be achieved, the system leading to the Maximum Like-
lihood Estimates (MLE) of the parameters being non
linear. The usual solutions are to derive a GLR as-
suming the signal piece-wise stationary or to supervise
estimated parameters of the chirp. We propose two
solutions taking into account both slow and fast non-
stationarities of the signal. The first consists in a GLR
derived from a signal phase model approximation. The
second keeps the exact model and uses an approxima-
tion of the LR. Delay to the detection is studied and a
discussion on estimation of the parameters after change
is leaded.

1. Problem statement

This paper is concerned with detection and estimation
of abrupt changes in a chirp signal. This problem is
important in vibration monitoring where the measured
signals reflect both the nonstationarities due to the sur-
rounding excitation and the nonstationarities due to
changes in the eigen structure. The signal model herein
is:

¥n = Aexp(jl{a/2)n* +wun+ ¢ +bn (1)

n =0...N —1, where b, is a white complex Gaus-
sian noise with variance o2 and the parameters vector
under study is € = {a,w, ¢). The problem of detect-
ing a break in 8 at instant & can be expressed by the
following hypothesis test:

H()I 0=60=(ao,w0,¢0) n=0...k,
Hi: 0:60=(ao,w0,¢0) n=0...r—1,
1 6:91:(0’1,(«)1,(}51) n:r...k,

k going from 0 to N — 1. Hj is the hypothesis that
no change has occurred between samples 0 and &k — 1
and H, is the hypothesis that a change has occurred at
instant 7 unknown with 0 < r < k.

3563

The parameters vector before change 8y is assumed
to be known. The instant of change r and the parame-
ters vector after change 81 are unknown and have to be
estimated by maximum likelihood (ML) in order to de-
rive a generalized likelihood ratio (GLR) between con-
ditional probability densities of the signal under each
hypothesis. However ML estimate of r and 8; cannot
be achieved, the final system being non linear.

In order to alleviate this problem, we propose, in
this communication, two alternatives. The first is to
derive a GLR from an approximation of the model of
Eqgn. (1), the second uses an approximation of the like-
lihood ratio from the exact model of Eqn. (1). We
will see that each solution gives answers to our prob-
lem. Our purpose will be then to compare their per-
formances.

2. Exact Generalized Likelihood Ratio
with a simplified model

Assuming that the SNR, A?/0? is large, it has been

proved [4] that expression (1) can be simplified as:

Yo = Aexp(jl(a/2)n®+wn+¢+uy]), n=0...N-1,

where u, is a zero mean white Gaussian noise with
variance a2/2A2.

Denoting the phase of sample y, by v¥,, the likeli-
hood ratio Ly (k, r). between hypothesis Hy and H; can
be derived from v,,. We can show that, at the instant
k,k=0..N-1:

k A2
Ly(k,r) = Z?

((¥n — (ao/2)n2 — won — ¢O)2 -
(¥n = (61/2)n® — &1n = §1)%)),

a1, w; and q§1 are the MLE of a;, wy, ¢; given by:
o I 2%, 1 Zo,u
T, T, 25, b | =1 Zuw |, (2
Yo Y3 2%, ay 22,‘/,
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k k
;= Z nl, By = Z Ynnd. (3)
n=r n=r

At instant &, the estimated value of r, #, is the max-
imizer of Lj(k,r) over [0, k]; this interval can be re-
duced, for computational cost, to a fixed length M:
[k—M+1,k].

Occurrence of a break is decided at the instant k
when L;(k,#) overpass a fixed threshold A:

H,
m’gxm?xLl(k,r)%A (4)
Estimates of a, w and ¢ are then obtained from 7, with
eqns. (2).

3. Approximated likelihood ratio with
an exact model

If the model (1) is kept, an approximated likelihood
ratio called “local approach” , [1, 3], can be derived
under the assumption of a relation between the pa-
rameters vector before and after change. We assume
herein linear relation: 6' = 6° + Ac where ¢ is the
“change direction” vector satisfying |[¢||>» = 1. Under
these hypothesis and assuming |A} = 1, the first order
approximation of the likelihood ratio is:

La(k) = A} (),

; dlogpg(y)/da \*

A (8) = | dlogpg(y)/ow |
9log pg(y) /¢

pg(y) is the conditional distribution of the samples vec-

tor y = (yo - .- ¥k).

Using the independence between signal and noise ,
denoting by ¢, ¢2, ¢3, coordinates of ¢ and after some
calculations, Ls(k) can be expressed as the following
cumulative sum:

La(k) = s (a)er + th(w)ez + w4 ()ea.  (5)

Each term of this sum illustrates the contribution of a
signal parameter:

e Sweep rate contribution:

k) =

A<~ L .. .
_F Z n“g‘(yﬂ eXp]([(a/Q)n- +wn + ¢])),
=0

e Pulsation contribution:

k

thw) = 25 3" (55 exp l(@/2)n? +wn + o)),

n=0

o Initial phase contribution:
94 &
=-— Z (v exp 7 ([(a/2)n* + wn + ¢))),

Occurrence of a break is decided if Lao(k) overpass
a fixed threshold A:

H,
La(k) s A (6)
Ho
The instant of break, #, is taken as the instant of de-
tection. The jump magnitude can be recovered by an
additional procedure. In effect, under the assumption
of large SNR, it can be demonstrated that for k < r—1,
s =t =uf ~0andfor k> r:

A k

5] = %— n?sin(({a; — ag)/2)n%) (7)
24 i

=~ ansin((wl—wo)n) (8)
A k

o~ 283 sin(61 - o) 9)

This allows the derivation of a sweep rate estimation
procedure from samples (s7,s7™!,s7%2,...) or on the
samples of the signal: {(vr,¥r41,...,Yr42-1), where L
should be sufficiently but not too large to make a com-
promise between accuracy of the estimation and delay

for the next detection.

4. Experimental results

The signal used is a noisy chirp showing a break in the
sweep rate: 8p = (0.01252,0.6912,0),
6, = (0.0112,0.6912,0), r = 45, N = 100.

Fig. 1 represents the real part of the signal and its
argument, i.e. ¥, for a snr equal to 10dB. Fig. 2
shows the result of the detector 1, i.e. L,(k,#). Fig.
3 represents the result of detector 2, i.e. Lg(k) for

= (-1,0,0). We can note that L;(k, ) does not equal
zero before the change since &; does not converge to
ag (see Fig. 4). The reason is that the search over r is
performed on a fixed window, M = 10 samples.
4.1. Delay to the detection
We study in this section delay to the detection as a
function of false alarm rate.

Usually, a detection problem consists in determin-
ing probability of fixed delay to the detection, Pd(r)
where r is the delay, and probability of false alarm,
Pfa, relatives to the detector. The problem is to choose
a threshold A which ensures a fixed false alarm rate
whatever is the value of the snr. Analytic expressions
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Figure 1: Real part and argument of y,.

. " Negnite
NEEREEEEN

Figure 2: Result of detector 1: Li(k, ).
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Figure 3: Result of detector 2: Ly (k) .
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Figure 4: a)(k) estimated from L;(k, ).
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Figure 5: Delay to the detection as a function of false
alarm rate for the detector 1:L,(k, 7)

of Pfa and Pd(r) function of A require analytic ex-
pression of the detector distribution under Hg and H,
but result of the local approach has been proved to
have only asymptotic properties. However, the thresh-
old has been fixed in the following manner:

1
A= 3T > de, (10)

where T determines Pfa and % f:;j,_l di_; 1s an esti-

mation of the mean of di, over a window of fixed length:
L, di being the result of each detector, 4,6. ¢ are the
number of “guard samples”. It is verified that curves
of Pfa function of T are independent of the snr.

The signal used is just the same, 500 noise realiza-
tions have been used for each snr.

Fig. 5 shows delay to the detection as a function
of false alarm rate for snr going from 5dB to 20dB
in the case of the detector 1. Delay to the detection
decreases as probability of false alarm increases, min-
imum delay to the detection (equal to one sample) is
reached for a Pfa greater than 0.8. For “correct” val-
ues of Pfa (greater than 0.2 and less than 0.5), delay
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[snr(dB) ] 0 | 5 [ 10 | 13 [ 17 | 20 |
[Pra(%) ]| 0.32 | 0.27 [ 0.14 [ 0.11 | 0.06 | 0.06

Table 1: Limits of probability of false alarm for the
detection for the detector 2

to the detection is meanly equal to 5 samples. A Pfa
of 0.35 seems to set a border: from 0.35, delay to the
detection decreases more slowly. An important result
is that performance is relatively independent from the
snr. Table 1 resumes performance of the second detec-
tor. Values given are values of Pfa below which there
is no detection, beyond these values the delay to the
detection is minimum and equal to 1 sample.

4.2. Jump estimation
The G LR structure allows to estimate at the same time
the vector parameters after change and the instant of
break. The accuracy of the jump estimation i.e 8, de-
pends on the accurate estimation of # and on the num-
ber of samples used for the estimation, see egs. (2,3).
The local approach does not permit to estimate the in-
stant of break and the amplitude of jump but its formu-
lation leads to approximate expressions of the detector
after the jump, see egs. (7,8,9). These results are very
useful in the case of a jump in the initial phase since
the problem of jump estimation is reduced to estima-
tion of the slope of the detector after jump. In the case
of a frequency jump or a sweep rate jump, the problem
remains the same: estimation of a frequency or estima-
tion of a sweep rate. In this last case, estimating the
new sweep rate on the signal after the instant of detec-
tion is better than estimating the magnitude of jump
on the result of the detector, see fig. (3), for two mains
reasons: first a treatment on the samples (s&,s5+1, .. )
is necessary to get samples of a linearly modulated si-
nusoid (eq. 7) and second the noise on s¥ is no more
Gaussian and white for low snr.

Fig. (6) shows estimated value of a;(k) for values
of Pfa going from 0.1 to 0.9, the true value being 0.012.
For a snr of 5dB, &; is fluctuating around a value of
0.0103. For all others snr going from 10dB to 20dB,
curves are almost superimposed and reach a fixed value
of 0.011 from a Pfa equal to 0.35, value which is also a
limit for the delay to the detection, see fig. (5). Some
remarks more or less expected can be made from these
results. First, the estimation of a; improves for grow-
ing Pfa going from 0.1 to 0.35, from which it stays to
a fixed value. This result can be explained by look-
ing at the delay to the detection, when delay to the
detection is too high, neither estimated value of r nor
estimation of «; are correct. Second, from a sufficient
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Figure 6: Estimated sweep rate as a function of false
alarm rate for the detector 1:L;(k, )

value of Pfa, delay to the detection is minimum and
estimation of a; improves but shows a bias due in part
to the fixed search window of 7.

5. Conclusion

Two solutions to detect and estimate a jump in the pa-
rameters of a chirp signal have been presented in this
paper. The first one uses an exact GLR with a signal
phase model of the signal and allows estimation of the
parameters after change. The second one keeps the ex-
act model of the chirp signal with an approximated LR
called local approach and requires an external proce-
dure for the jump estimation. Delay to the detection
for the GLR decreases as the false alarm rate increases,
there is no detection at all for very low false alarm. The
local approach has a fixed and minimum delay to the
detection over a fixed false alarm rate which depends
on the snr. Use of one or the other algorithm will then
depends on the assigned constraint for the application
under study.
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