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ABSTRACT

Beamforming algorithms handle sources that are located in
the near field by simply adapting the steering vector and
having it depend not only on bearing but also on range.
The corresponding algorithm, known as the focused beam-
former, has poor performances even though the compu-
tational burden is quite important since it involves a 2-
dimensional beam evaluation in the bearing-range plane.
In order to localize such sources using a linear equispa-
ced array in a narrowband context, we propose to apply
a deconvolution approach ! to the output of a beamformer
performing a one-dimensional evaluation. For reasonably
difficult scenarios, the performances we obtain are satisfac-
tory (close to the Cramer-Rao bound) for a quite acceptable
computational burden.

1. INTRODUCTION

We consider a linear array with equispaced sensors with
an inter-sensor distance equal to half a wave-length (A\/2)
at the temporal frequency f:. The location of a source is
defined by its bearing ¢ with respect to broadside and its
range p both measured with respect to the center (of phase)
of the array. We will assume that the sources are either in
the far-field or the near-field but however at a range that
is large enough for not having to consider a difference in
the powers received at the different sensors of the array.
We normalise all quantities : the temporal frequency f: is
taken equal to 0.5, the unit of length is taken to be A/2
and the ranges will be expressed in this length-unit, the
bearings will be transformed into spatial frequencies v =
% sin ¢ and thus vary between 0.5 and —0.5. A source is thus
characterized by its power «, its spatial frequency v and its
range p. The corresponding unknowns will be denoted a, f
and r.

We will assume that the propagation is well modeled by
the usual model and that there is no mismatch between the
direction vector d(v1, p1), that is associated with a source,
and the steering vector d(f,r) used by the beamformer.
The k-th component of the steering vector d(f,r) when fo-
cused at f = vy and r = p; is then exp{2ir firc(v1,p1)}
where 7 (v1, p1) is the propagation delay between the sen-
sor k and the center of the array for the wave emitted by
the source. Under the above defined normalizations, this

1This work was supported by the “Direction des Construc-
tions et Armes Navales.”, Toulon
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component becomes exp{in(p1x — p1)} where p1x is the
distance between the considered source and sensor k ex-
pressed in half-wave-lengths. The steering vector is thus
given by :

[e{i’f(Pl,1—P1)} elitlerz—pP1)} e{""'(Pl,N—Px)}]T

d(Vl, p1) =
For a P sources scenario in additive white noise of power
o2, the covariance matrix of the snapshots is then given by :

P
R=" ap d(vp, pp) d(vp, pp)" + 021

p=1

We define the output of the beamformer focused at f and
r for this same scenario ‘to be :

y(for) = 53 d0f,)" Rd(f,7) W

where N is the number of sensors. Note that the covariance
matrix R has no special structure : it is hermitian with a
constant diagonal and depends upon N(N — 1) + 1 real
degrees of freedom. For a single source in white noise the
output of the focused beamformer becomes :

_ 1 d xud 2 012L
y(f,r)—ﬁcnf (1, p1)" d(f,7) | tv (2)

2. NEAR-FIELD CHARACTERIZATION

Let us characterize the boundaries of the near-field domain
and give an upper and a lower bound. Sources that are
further away (than the upper bound) are said to be in the
far-field, while for sources that are closer to the center of
the array a different model would have to be considered.

A source is in the near-field when its wavefront can no longer
be considered to be planar over the array aperture. It thus
strongly depends upon the size of the array, we denote this
length by ! (I = N — 1 in our units). It is then easy to
check that, for a given bearing ¢, the discrepancy between
the planar wavefront induced by a far-field source and the
curved wavefront due to a near-field source with range p, is
maximal for a source at broadside (¢ = 0) and that A, the
corresponding difference in travel distance (along the array)
is A =~ (lcos ¢)?/8p. Indeed, as far as range estimation is
concerned, [ cos ¢ is the useful length of the array for a
source with bearing ¢. One can then consider, as in [1],
that the limit between the far and near-field corresponds to
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A ~ 1/8 which leads to the usual values that fix this limit
around N or N/2 times the length of the array.

p <IN or p<IN/2 wupper limit

Let us look now at what happens if the source is very close
to the array. The solution to the wave equation [2] has
always a factor of the form % where r is the distance between
the source and the considered point and the true steering
vector is :

d(v1, ;1) = [lie{i"(l’l,l"ﬁ’l)} 1 e{if(Px,N—Pl)}]T

P11 PN

If a source is in the far-field the variation in the travel dis-
tances {p1,x} along the array is negligible and this term is
omitted : the power is considered to be the same for all
the sensors. The question is how long can this term be
neglected ? The difference in travel distance is maximal
for end-fire sources and never exceeds [. For a source with
bearing ¢ it is roughly !sin ¢ and if one is willing to neglect
relative variations in power smaller than % one obtains as

a lower limit :
p>101sing lower limit 3)

For sources that are closer to the (center of) array than
this limit it is necessary to take into account the variation
of power along the array in the estimation procedure (as
well as in the simulations !).

3. GENERAL PRINCIPLE OF THE METHOD

Since the focused (bidimensional) beamformer has poor per-
formances and is too time-consuming, we propose to use a
one-dimensional beamformer followed by a model-fitting al-
gorithm [3],[4]. Let us observe from the beginning that some
information is lost when going from R, the estimated covari-
ance matrix which is a sufficient statistic for the data, to
the outputs of a one-dimensional beamformer (1). Indeed
R has N? — N + 1 real degrees of freedom and we will, in
general, only form 4N — 1 (real) beams.

The general idea of the procedure is as follows [3},[4].

e We start evaluating the output of the focused beamformer
at a discrete set of spatial frequencies, say fi, along a one-
dimensional curve in the (f,7)-plane defined by r = ¢(f).

This curve is chosen so that for a single source scenario
the output of the beamformer F(f, c(f)) exhibits, over f, a
unique global maximum located at f = 1, the true spatial
frequency of the unique source present. This property has
to hold for all possible locations of the unique source. To fix
the ideas, we consider in the sequel that this curve is sim-
ply the straight line in the (f,r)-plane defined by r = r,., a
fixed range. Note that taking rm = oo, which corresponds
to the standard beamformer (for far-field sources), is not a
"line” that satisfies this property. Such a line exists however
but more interesting curves should be considered. By lin-
earity, one can expect that this property holds somehow for
multiple sources scenarios. The idea behind this first step
is to locate the interesting spatial sectors in which sources
are potentially present by simply doing a one-dimensional

search and thus to limit the computations. We thus evalu-
ate for instance :

5 k 3
y(fk,rm), fk = m k= O,:f:l, ..t (2N-— 1) (4)

with r,, a fixed intermediate range.

e Localize the global maximum of this one-dimensional out-
put and associate with it a spatial sector. A threshold is
defined from a preliminary estimate of the power of the ad-
ditive white noise and is used to associate with the current
global maximum a limited spatial sector. While for an iso-
lated source the width of this sector is in general limited to
the main-lobe, for sources that are closely spaced in spa-
tial frequency the width may be quite large and a sector
encompass several sources. The objective here is to reduce
the computational load and to avoid the emergence of local
minima in the criterium used in the model-fitting scheme.
o The values of the beams belonging to this sector are col-
lected in a vector, say V. Only an estimate V of this vector
is available in practice. It is, asymptotically in the number
of snapshots, a random gaussian vector with mean a model-
vector V(8. ), function of the parameters @ to be estimated
and with covariance matrix £(f..).

For a single source scenario (see (2)), the unknowns are
ez = (0 v1 p1 02) and the value of the component of the
vector V at spatial frequency fr belonging to the sector, is :

1 . ol

wzeald(, p1) d(fu,rm)| + N ()
the corresponding component of the model-vector with un-
knowns 8 ={a frv]is:

v

rald(fusm) df ) + % (©)

Note that the model-vector takes into account the fact that
the one-dimensional search has been done along the curve
T = rm and that for § = .. the two components are identi-
cal. A consistent estimate ¥ of the covariance matrix X (6. )
can be obtained from the data without a preliminary esti-
mation of §. It is used to define a least-square type criterion
between the observed vector V and the model vector V(8) :

CO) =V - V()i (7)

This is a standard criterium that is justified here by the
fact that the vector V' is asymptotically gaussian

o The criterion is minimized for an increasing number P of
sources, starting with P = 0. For a given P the number
of unknowns is 3P + 1, (ai, fi,r:) for each source and the
noise power v. The component at spatial frequency fr of
the model-vector V() is then :

P

1 . v

Nz > aild (fryrm)-d(fima)* + N

=1

The unknowns are obviously not of the same kind. The
model is linear in the amplitudes a = [a1..ap] and v and
non-linear in the frequencies f = [fi1..fp] and the ranges
r = [r1..7p]. The model vector can thus be re-written as :

V(8) = V(a,v,f,r) = D(f,r)[a, ] (8)
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The criterion is evaluated on a coarse grid in the (f,r)-
plane (corresponding to the non-linear unknowns) in order
to obtain an initial estimate that is improved upon using in
a quasi-Newton algorithm [5]. Note that so far we have only
performed a one-dimensional beam evaluation. The cost of
the evaluations on the local two-dimensional grid has thus
to be compared to the two-dimensional focused beamformer.
o The value of the minimum denoted Cmi.(8p) decreases
with P the number of fitted sources. An Akaike type test is
then implemented to estimate the number of sources present
in the spatial sector.

® Once a sector has been processed, the contribution of
the sources estimated in this sector is substracted from all
the beams. The same procedure is applied to the spatial
sector associated with the new global maximum until no
interesting sector is left.

4. SOME DETAILS OF THE METHOD

‘We now detail some of the important points of the approach.

4.1. THE CHOICE OF Ry

The deconvolution approach we propose uses as input the
outputs of a one-dimensional beamformer in the frequency-
range domain. We propose to evaluate the beams at a set
of equispaced spatial frequencies fi, along a curve r = c(f).
The idea behind this procedure is that an inspection of these
beams allows to locate the spatial sectors in which sources
are present, whatever their range, and thus to only process
these potentially interesting sectors in the sequel.

In the simulations given below, we have evaluated the beams
at 4N —1 equispaced spatial frequency and constant range,
denoted rm (4). This is certainly not the best choice. A
probably better choice would be to consider points (in the
frequency-range plane) that are on a circle tangent to the
array at its center, under some simplifying assumptions one
can show that the points on such a circle have constant
range estimation variance [6] [7]. Note also that this choice
is very important since it decides upon the quality of the in-
formation to be used in the sequel and thus directly affects
the performances and detection threshold.

If one takes a closer look at the two terms (5,6) whose dif-
ference is minimized by the algorithm, one notes that if ev-
erything is known (a = @1, f = vy, v = 02) but the range
p1 , and for fi close to v1, the difference between these two
terms is maximal if r = r,, and decreases on both sides of
this value of r. In general it thus has two minima, one on
each side of rn,, the global minimum for » = p; and another
one. This is a disadvantageous situation since an algorithm
will converge towards to the minimum associated with its
initialization point. One mean to circumvent this difficulty
is to take r,, at the lower boundary of the domain of in-
terest (3). It is this choice that we make in the simulations
where we take r,, = 4l.

4.2. THE OPTIMIZATION ALGORITHM

Remember that the model (8) we fit to the “observations”
is linear with respect to the amplitudes (sources and noise)
and non-linear with respect to the frequency and range.
The optimization is thus performed essentially with respect

to the frequency and range variables, the associated optimal
amplitudes being trivially obtained.

This is an important issue since the major drawback of a
model-fitting approach is the computational load. Work-
ing on isolated spatial sectors is already a partial answer
to this issue. In a given sector we start evaluating the cri-
terion on a two-dimensional grid. This means that, if we
assume, for instance, that there is a single source in the
sector, we evaluate the criterion assuming successively the
source to be at the different points of the grid. While the
width of the mesh is a constant along the spatial frequency
axis, along the range axis we take an unregular grid that
takes into account the quick variation (of the order of r?) of
the standard-deviation of the range-estimate given by the
Cramer-Rao bound[7]. In between the lower bound taken
equal to r, and the far-field we take six points in the grid.
Note that the evaluation of the criterion on the grid is ex-
tremely time consuming since it has to be done in a given
sector for an increasing number of potential sources for all
possible source-position combinations.

The purpose of this first step is to furnish a good initializa-
tion point to the iterative optimization algorithm. We have
implemented a quasi-Newton type algorithm : BFGS with
a Wolfe’s line search [5].

5. SIMULATION RESULTS

With our approach, a complete scenario is in general de-
composed into a set of spatial sectors. Each sector is pro-
cessed in turn, somehow independently of the others [3]. A
good idea of the performances is thus already obtained by
looking at what happens in one spatial sector. We present
results that correspond to two-sources scenario, where the
two sources are in the same sector.

We consider a linear array with N = 31 equispaced sen-
sors. The number of snapshots is T = 100. We always
start evaluating 4N — 1 = 123 beams at equispaced spatial
frequencies and (focused at) constant range r,, = 120. Re-
member that the unit of distance is A\/2, so that ., is equal
to 4 times the length of the array.

‘We present results obtained from 20 independent simula-
tions for a number of different two sources scenarios. They
have bearings closer than the (far-field) Rayleigh limit with
different powers. A focused two-dimensional beamformer
does not allow to distinguish them. In table 1, we indi-
cate, for the different unknowns the estimated means and
variances (averaged over the 20 independent trials) together
with the corresponding Cramer-Rao bounds. For each sce-
nario, we also give the number of sources detected by the
Akaike-like criterion (in percentage).

6. CONCLUSION AND COMMENTS

We have proposed a model-fitting approach that localizes
near-field as well as far-field sources. It works in narrow-
band on the outputs of a one-dimensional beamformer. The
objective was to outperform the focused (two-dimensional)
beamformer without a too important increase in computa-
tional cost. It is attained though the cost increases rapidly
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when the number of sources in a spatial sector (clustered in
spatial frequency) exceeds two.
This approach has several interesting features:

o it works locally on sector of limited width. This is inter-
esting because it diminishes the computational burden and
somehow avoids the presence of local minima.

o it includes a detection scheme and estimates the number
of sources present together with all the characteristics of
the sources : range, bearing and power.

¢ though there is some loss of information when going from
the complete data to the focused beam outputs, it has good
properties since it is based on the statistical properties of
the focused beams.

To further increase the performances and improve the con-
ditioning of the optimization problem one should probably
evaluate some further focused beams along the range axis
in each spatial sector and modify the criterion accordingly.
This possibility has not been investigated. )

One should also note the source motion is more perceptible
for sources in the near-field : for a source with a given speed
the variation in spatial frequency is much more important
for a source in the near-field than for a source in the far-
field. The time-span over which a source in the near-field
can be considered as immobile is thus much shorter and this
reduction in integration time in general not compensated for
by the increase in SNR. The source-localization problem in
thus intrinsically more difficult in the near-field. Including
the motion as a additionnal parameter may help but further
increases the (computational) complexity.
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