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ABSTRACT

Wideband beamformers based on cross-spectral matrices between
array elements are examined. Two methods to estimate such
matrices are described, a standard one, the Transform-and-
Correlate (TC) pre-processor, and a novel one, indicated as
Correlate-and-Transform (CT) pre-processor, which should be
considered on an equal base as the former. Applications of CT
are outlined in the estimation of correlated multipath, in acoustic
Doppler current profiling, in interferometric seabed profiling and
in the synthetic aperture sonar.

INTRODUCTION

The purpose of beamforming is to estimate the spatial

parameters, such as the Directions Of Armival (DOA) of the

sources. Relative performances of two different beamformers are
measured as follows:

- for a required performance in estimation accuracy, the better
beamformer is the one which requires a shorter duration T of
the data observation interval, and/or a smaller signal-to-noise
ratio (SNR),

- for the same values of SNR and T the better beamformer is the
one which achieves more accurate estimates.

The paper considers two pre-processors (Fig. 1.a,.b) in which:

- by processing the array output relative to a data observation
interval, frequency bins are formed from a wide band;

- Cross-spectral Matrices (CM.) among array elements are
estimated for the bins, by two different algorithms.

After pre-processing, the CM, matrices can be combined,

coherently or not [1], to obtain a global beamformer. Some types

of beamformers are Bartlett, Capon, MUSIC. For example, in

MUSIC a global incoherent beamformer is ([2], p. 1510):
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] is the steering vector relative to the i-th bin, which is the
fmalised complex array output for a hypothetical CW source of
frequency f; and spatial parameter p. In general, the current value
p is not coincident with any of the unknown k-th source
parameter py, to be estimated. The value that the steering vector
assumes in correspondence to p; will be indicated as the
propagation vector of the A-th source. The quantity N; is the noise
subspace matrix, derived by eigenanalysis of CM;.

As the steering vectors are computed in correspondence of CW
sources, employing the CM; matrices for beamforming is fully
motivated only when these have the same structures which occur
in the case of CW sources [1].

The spectral method is considered an instrumental, intermediate
step for the task of estimating the spatial parameters of the
sources. The number of independent bins in a wideband depends
on the structure of the pre-processor. In general, a loss occurs
when recombining the bin outputs in a global beamformer [1]. By
decreasing the number of bins, the "threshold” value of SNR in a
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bin (the value under which the estimation performance degrades
rapidly) decreases, and the re-combination loss decreases too.
The better performances are likely to be achieved by the pre-
processor with the minor number of bins.

In sect. 1 the two pre-processors are examined for infinite
duration of the observation interval. In sect. 2 the implementation
of the two pre-processors for finite duration interval 1s shown and
performances are preliminarily investigated. In sect. 3 some
applications of the CT pre-processor are outlined.

LIST OF SYMBOLS
c propagation speed
D diameter of the array
1 centre frequency of the wideband signal
jL? centre frequency of the i-th frequency bin
Doa Direction Of Arrival
TOA Time Of Arrival to an array element
T =D/c time of wave propagation along the array
F bandwidth of the wideband signal
B, bandwidth of the frequency bin
q=B TP decorrelation index
T duration of the data observation interval
yin complex envelope of the i-th array element
+ indicates conjugate transposition
CM. Cross-spectral Matrix for frequency bin f;
Rcrtt) cross-correlation matrix of CT at lag t
Repi(D) = Elvi(ty, " (t-1)] element i,j of Ro(7)
R (1)  crosscomrelation matrix of TC for bin}-}
SCT(z) Fourier Transform of R.(1), z = exp(y2af)
Stei=R1ci(0) cross-spectral matrix of TC for bin f;

Scri=Scr{z)) cross-spectral matrix of CT for bin f;

1 OBSERVATION INTERVAL OF INFINITE DURATION

Assuming the ergodic hypothesis, the ensemble averages
indicated in this section coincide With time-averages.

1.1 The Correlate-And-Transform Pre-Processor

The cross-spectral matrix estimated by CT is So{z), which is the
Fourier Transform (FT) of R~{1), the cross correlation matrix
among the array elements at lag 1. Although a sampled data
version of S.(z) was introduced first in ([1}, pp. 1513) it does
not seem that the matrix properties which are illustrated by the
following example have been fully recognised.

A planar wavefront associated with the broadband source random
signal x(f) impinges on a two-element array. The following
quantities are defined:
(1) = <x(t)x” (t-1p>
gN= FTof (1)

:autocorrelation of the source signal
:spectral power density of source signal
D :distance between array elements

0 :source DOA measured from broadside
Yg = D sin{8)/c «difference in TOAs to array elements.

Neglecting delays common to both elements, the outputs are:
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Assuming stationary signals in the observation intervai, the cross
correlation matrix among array elements is:

et ()

-T,) (1) 3)

After FT we have for a generic value fof the frequency

sa@ st 4, T s B )

In deriving eq. (4) from (3), the theorem of FT has been applied,
for which time delaying (1) by ¢ implies multiplying the FT by
z*. The rightmost member of eq. (4) indicates that Scr{z) has
rank one, since it is given by the outer product of the unit-length
vector (1, 270 )¥ by itself. The vector is equal to the propagation
vector of a CW source of frequency /.

In the case of P wideband mutually uncorrelated point sources, in
the absence of noise, S.(z) is the weighted sum of P outer
products between unit-length propagation vectors, the weights
being the source spectral power densities. In fact, for each source,
the difference between TOAs relative to the array elements (if),
which appears in the argument of the scalar cross-correlation
term Rr..(t) gives rise, after FT, to a product of three terms: two
terms % rs) have purely imaginary exponents which are
proportional, but with opposite signs, to the i-th and to the j-th
TOA, respectively, the third term, which is the source spectral
power density, is the same for all the elements of S.{z). The
product of the two phasors is an element of the outer product of
the source propagation vector by itself, then for each source a unit
rank contribution to S.(z) arises. This feature holds for any
wavefront shape.

To illustrate the case of fully correlated multipath, consider two
wavefronts due to the same source with DOAs (8, 8,). Let T, be
the delay between the wavefronts. We have:

() =x(t)+ Ax(t-T.) T, =(L/c)sin®,
NO=x(t-T)+ Ax(t-T-T,)  T,=(Lic)sing,

The quantity 4 is a complex number, which depends on the
modality of propagation. It is easily proved that S..(z) has rank
one, with propagation vector [ 1 + A*zTr | 271 + A*z 12},

In conclusion, the S..(z) matrix achieves the outer product
structure required for orming exactly, for any value of
source bandwidth. Hence CT would be able, in an observation
interval of infinite duration, to solve the problem of decorrelation
along the array arising from wideband signals.

1.2 The Transform-And-Correlate Pre-Processor

Figure 1.a shows the Transform-and-Correlate pre-processor for
estinating the cross-spectral matrix for the i-th bin, indicated by
Stc;- The observation interval is partitioned in nonoverlapping
sugmtervals, so that, after FT in each subinterval, the condition
BT »<< 1 holds and the bin vector data have quasi-CW structure;
In a sub-interval one outer vector product is computed for each
bin, then time uncorrelated vector products, derived by distinct
subintervals, are averaged bin by bin to obtain statistical stable
estimates of SF. With reference to eq. (3) we have for the two-

element array ot frequency bin f; :

n (0) |’? (—Tb)lz,-r"

Stci = Rri(0)=
Tei = Rrei(0) [l’i(TO)Izi‘To 7(0)

] s (B = (-1)

(6)
where r;(1) is the scalar autocorrelation function at the output of
an array element. As for non-CW signals [r(Ti<r(0), the S

matrix is not proportional to the outer product of the source
propagation vector by itself as in the S;. matrix (eq. (4)).
Because a steering vector has a CW structure, employing SJ.Ci for
beamforming is fully motivated only when this has the "right”
outer product structure, which occurs for CW signals but not
wideband signals. The Sy, matrix would achieve the required
structure only asymptoticaﬁy for B.—0, as in this case |r(-T,)|—
r;(0). Hence, in TC the problem of decorrelation along the array
due to wideband signals is attenuated by dividing the bandwidth
in frequency bins, but not solved as in CT.

1.3 Comparison of the Pre-processors

A question arises: assumed that the main requirement for
beamforming is the estimation of the source spatial parameters
and not spectral estimation, why is Fourier Transform employed
in both pre-processors? An answer is that, as beamformers valid
for CW signals are available, it is convenient to try to extend the
methods valid for CW signals to wideband. A requirement for the
extension is that the CM; have the proper structure which is a
weighted sum of outer products between propagation vectors.

The technique adopted in TC to fulfil the requirement employs
two steps: the first is obtaining quasi-CW data by dividing the
wideband in frequency bins, the second is estimating the bin
matrices. As a consequence of the first step, which is not a
requirement from beamforming but it is instrumental to the
second step, the matrices quasi achieve the required structure.
The TC processing criterion is sufficient but not necessary in
order that the bin cross-spectral matrices estimated by processing
the array data (quasi) achieve the required structure. In fact, a
requirement arises from spectral beamforming only for the cross-
spectral matrix structures, but not for the structures of the bin
data after FT.

The CT technique consists in looking for a functional transform
of R-(1) able to generate bin matrices with the proper outer
product structures, and this functional transform is a FT. In fact
in the case of wideband and for a generic source-array scenario
only the matrix S.(z) and not R-; (7) has the required outer
product structure. In CT it is not necessary to obtain CW or
quasi-CW data as an intermediate step for beamforming.

2 FINITE OBSERVATION INTERVAL

The discrete implementation of the two pre-processors (Fig.
1.a,b), shows that the two matrix estimates perform the same
operations, but not in the same sequence. The operations are:

- estimating the cross-correlation terms: computing elementary
outer products and time averaging of the products 1n an interval
of duration 7" to obtain stable matrix estimates,

- Fourier Transform. .
Although the operations are the same, the pre-processors are not
identical, as shown by eqgs. (4), (6): an outer product is a non-
linear operation, so changing the sequence changes the result.
The TC and CT pre-processors are generalisations to arrays of
two scalar estimates of the spectral power density of a stochastic
process: a) the Periodogram, and b) the Blackman-Tukey spectral
estimator ([3], sect. 14.2). In most of the applications of
wideband spectral beamfonmers found in technical literature, the
pre-processor employed is TC. Preliminary analysis indicates that
the number of bins in CT is smaller than in TC. Simulation
indicates that the MUSIC beamformer based on CT has
significantly better performance than the Frost beamformer [4] in
the task of discriminating the DOAs of a weak and a strong
source, and in the minimal operational signal-to-noise ratio-

2.1 Transform-and-correlate pre-processor
A requisite that determines partitioning of the finite interval in

subintervals is indicated below for the two-element array: if a
short sub-interval duration is taken, averaging over the sub-
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intervals gives S,., matrix estimates with small statistical
fluctuations; but -{ﬁe ratio |r(To¥r(0)] between the matrix
element estimates (the symbol ' indicates average value in a finite
interval) would be significantly smaller than one, so the deviation
of the matrix from a unit rank matrix would be significant (see
eq. (6)). By taking a long sub-interval duration the ratio of the
expected values would be closer to one but the statistical
fluctuation due to the small number of sub-intervals available for
averaging would give rise again to a deviation, of statistical
nature, between the estimated correlation matrix and a unit rank
matrix. Hence a compromise choice for the sub-interval duration
is required. The bin bandwidth B, is given by.
1 B

8,=B7T,- ‘B=—— , a,= >1

T B a,q BT, 0

14

Note that B, T,<1, as indicated at the beginning of sect. 1.2

2.2 Correlate-and-transform pre-processor

The processing [2] extends the method valid for the scalar case

([3], ch. 14.2). Two vector data samples, one sample being taken

with a lag t with respect to the other, are (outer) multiplied, then

an average of the uncorrelated outer products contained in the
observation interval is performed to obtain a R, () estimate.

The latter is multiplied by a scalar triangular tapering function

w(t) which is one at lag zero and zero for |t|21,; the lag 1, is

chosen so that for |[t}>1, the actual value of RCT(‘?) 1s negligigle.

The S (z) estimate, derived by applying FT to the estimate of

(R(t)M(7)) in the interval (-t Ststy), has the following

charactenistics:

- the standard deviation of the scalar spectral power density
estimate divided by the value of the actual spectral power
density is about (2t,7)V2 ([3] eq. (14.61)); a triangular
tapering function is sufficient to guarantee a non-negative
spectral power density estimate;

- the bin bandwidth 1s 1/z, Setting to zero the correlation
estimate for |t[>t, degrades the spectral resolution and
introduces spectral gias, which are negligible for large 1,

Assuming that the spectral bias of the cross-spectral matrix

estimate is not a problem for beamforming, the value of 7, should

be chosen as indicated below:

- if 1, is too small, enough uncorrelated outer product samples

can be averaged in the data interval to obtain a stable estimate

of R.(t). However the amplitude bias which affects this
matrix is significant and especially the off-diagonal elements of

R.(7), the ones bearing information on the DOAs, are severely

distorted. As a consequence it is likely that the S.(z) estimate

outer product structure, which is relevant to beamforming, is
severely distorted too;

if 7, is too large the amplitude bias of R.(t) is negligible, but

the number of uncorrelated outer procfucts available in the

interval for averaging is too small to obtain a stable estimate of

R1{7) and, consequently, of S.{(z).

So an optimal choice of the value 7, is likely to exist. At this

stage of analysis, a simple criterion leading to an optimal value of

T, has been not found. Qualitatively, by assuming in the infinite

interval two-element array example the worst case value for T,

ie, T, =Tp in eq. (3), the off-diagonal element n(1-T ) becomes

neglig?ble when (1-T )2a,/B. The number a,, should Be taken so
large that the scalar autocorrelation function is negligible for
|t|2‘ro=Tp+aolB. Thus it can be assumed for an N element array;

_a _a,tgq
TO—E"'FT’——-OE-— (0024) (8)
By eq. (7) the ratio p between the frequency bin bandwidths of
the CT and TC pre-processors is:
= BI(CT) = 94,
B(TC) gq+ta,

%)

when g>>a, we have p=a,.

3 APPLICATIONS OF THE CT PRE-PROCESSOR

3.1 Simultaneous Estimation of the DOAs and Relative TOAs
between Correlated Emissions

The comments to eq. (5) indicate that by processing the S.(z)
eigenvectors of a N-element array (N>2) the estimates of Ty, T5,
T, can be obtained. Phase ambiguities might be minimised by
processing simultaneously the S{z) of all the bins. Referring to
the two-element example, and assuming BT >>1, we have for the
required data observation interval duration T

- TC case: for the two wavefronts to appear correlated in a bin,
its bandwidth must be chosen so that B,7,<1; a number M of
subintervals for averaging are required to achieve stable matrix
estimates in a bin, so T cannot be less than MT ;

- CT case: to get a rough indication of T consider only the first of
eq. (5) , with A=1, and assume that the aim is obtaining a
stable estimate of (<) at lag T, , where a secondary peak of the
autocorrelation occurs. As the elementary products between
pairs of samples of the element outputs spaced T, seconds,
which are averaged to estimate (T, are almost uncorrelated for
a sampling interval 1/B, the interval duration is of the order of
(7('5+M/B), which is significantly shorter than that required by
T

We will consider now continuous extended targets, modelled as
spatial random processes, in the cases of backscattering from the
transmission medium (as in an acoustic Doppler current profiler
[5] using an array antenna) or from the sea bottom (as in an
interferometric profiler [6] or in a synthetic aperture sonar).

3.2 Array Acoustic Doppler Current Profiler (ADCP)

The transmitted waveform is composed of a number N, of
identical wideband time-adjacent sub-pulses, each of duration T,
adjacent sub-pulses are separated by a short transmission gap of
duration t,. A number of array elements N=3 is assumed. A
linear even%y spaced array is examined, for a 'target’ which is the
backscattering volume defined by the range and azimuth cells.

V: target radial velocity to be estimated; d = 1+2V/c

L: distance between adjacent sensors

0;: Direction of Arrival of the source

Ty=Lsin8j/c : TOA difference between adjacent array elements
T, interval between transmitted sub-pulses

TI:) sub-pulse duration; we take T,=T+1,(eq. (8))

B: sub-pulse bandwidth; we assume BT>>1.

B.y taking N;=2, we have:

()= x(1),y5(0) = x(t = T, ), y3 (1) = x(¢ = 217)

(10)
va(t) =yt =To iys(t) = ya (1 = Ty )i s (0) = y3(1 = 1)

The observed vector has dimension (N-N). The Sp.(z) has
dimensions (N-N, , N-N,). The observation interval is assumed
equal to N,T. The target is not point-like as in sect.2, but has a
finite DOA distribution: it 1s conjectured that the DOA
distribution affects mainly the higher order eigenvectors (those
corresponding to smaller eigenvalues). The rank of the ensemble
average of S-(2) is 'nearly’ one, and the propagation vector is

(1, 29N, 24N 4T = &To+Ty)  ATo*2T1) )+_ (11)

In the presence of a turbulence-distorted wavefront the first
eigenvector of Sp(z) bears the imprinting of the wavefront shape
and of the Doppler shift; by processing the eigenvector the shape
and the shift can be estimated. The refocused spectral power 1s
contained in the first eigenvalue. When only one array element 1s
present, the processing reduces to the pulse-pair processing for
velocity estumation [5].
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The same considerations apply to the aerial counterpart of the
ADCP, which is the SODAR

3.3 The Interferometric Sea Bottom Profiler

A high-BT pulse is transmitted. The range and DOA estimates
are derived, respectively, by the time elapsed between
transmitted and received signals, and by exploiting the
differences in echo TOAs to the array elements. A small value of
T is required because the DOA of the bottom echo varies rapidly
during a receiving cycle.

It is assumed that the required range resolution r, i.e. the range
cell, is that corresponding to pulse duration T, which'is » = ¢T/2.
After pulse compression, employed to increase the SNR, since
the time interval between uncorrelated time samples is still 1/B,
the uncorrelated array vector data comprised in an interval of
duration T, whose number is BT, are processed to estimate
Ro(7), from which the cross-spectral matrices S~{(z,) are
estimated; then they are employed to obtain a global beamformer
(fig. 1.b) for the range cell. The range resolution equals r.

By employing a high-BT transmitted pulse, followed by the
averaging of the uncorrelated outer products comprised in the
interval T, reduction of the angular scintillation (glint) of the
DOA estimate is likely to be achieved.

The DOA estimation is achieved here by processing the array
element outputs not in pair-wise mode (as it 1s customary in most
of today's systems) but globally, via the CT pre-processor. The
first eigenvector, for each range resolution cell, can provide an
accurate DOA estimate. Example: r=2m, wavelength=0.015m,
Bif=0.4, BT=100.

3.4 Synthetic Aperture Sonar

The processing is the same as in sect. 3.3, but here the processed
samples are the ones relative to the along-track synthetic antenna,
while in sect. 3.3 the samples are the element outputs of the real
array for across-track profiling. For each rangexfrequency bin the
components of the first eigenvector have a phase pattern
containing, beyond the usual quadratic part associated to range
migration, a residual part due to uncompensated platform motion.
It is conjectured that:
- by processing simultaneously the eigenvector components
phase structures of all the frequency bins pertaining to the same

range bin, the residual uncompensated platform motion might
be, at least in part, estimated (the phase histories can be
unwrapped) and compensated before along-track beamforming,
By doing so the requirements on platform attitude control might
be released,

- the problems of target decorrelation due to the changing of the
aspect angle as seen by the platform might be attenuated by
first-eigenvector-based beamforming.

4 CONCLUSIONS

Between the pre-processors for estimating the cross-spectral
matrices in wideband spectral beamforming, the TC pre-
processor is more widespread than CT. Although for infinite
observation interval the two pre-processor outputs are nearly the
same, their performance indexes may differ, as the operation
sequence, not the same for the two, and averaging on a finite
interval may give rise to distinct statistics. Preliminary analysis
indicates promising performance for CT, so the pre-processors
should deserve an extensive comparative evaluation, and should
be considered on equal ground for possible applications.
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Fig. 1. Estimating cross-spectral matrices from array data: (a) Transform-and-Correlate and (b) Correlate-and-Transform pre-processors.
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